Maximum Likelihood Estimation

Math 422 - Workshop

In statistics, we usually assume that the population we are interested in can be described by a probability distribution. For example, we might assume that the heights of students at one college has a normal distribution with parameters μ and σ . We call this a **statistical model**, and our goal is to find the best estimate for one or more of the parameters based on a sample. One way to approach this uses likelihood functions.

Recall that if X_1, \ldots, X_n are independent, identically distributed random variables with common PDF or PMF f(x), then the joint PDF or PMF for the random vector $X = (X_1, \ldots, X_n)^T$ is:

$$f(x_1, x_2, \ldots, x_n) = f(x_1)f(x_2)\cdots f(x_n).$$

If we think of our sample as n independent observations x_1, \ldots, x_n from a population, then we can use the joint density above to get a likelihood function for the unknown parameter(s) in a statistical model. The **maximum likelihood estimate** (MLE) for the parameter(s) is the value of the parameter(s) that maximizes the likelihood function.

- 1. Suppose that X_1, X_2 and X_3 represent independent observations all with the Pois (λ) distribution.
 - (a) If $x_1 = 4$, $x_2 = 5$, and $x_3 = 3$, then what is the likelihood function $L(\lambda | x_1, x_2, x_3)$, that is, what is the likelihood function for λ given the observed values of x_1, x_2 , and x_3 ?

(b) What is the maximum likelihood estimate for λ ?

2. Show that the MLE for λ based on *n* independent observations from a Pois(λ) distribution is always the average of x_1, \ldots, x_n .

3. Suppose we think that heights of students at one college are normally distributed with unknown mean μ . If we have reason to assume that the standard deviation is $\sigma = 3$ inches, then we can use a sample to find the maximum likelihood estimate for μ . If we find the heights x_1, \ldots, x_n of a sample of n randomly selected students, then show that the sample mean \bar{x} is the MLE for μ .