Least Squares Regression

Suppose we have three data points with x and y coordinates given by the following table:

1. Use the formula $r=\left(\frac{x-\bar{x}}{\|x-\bar{x}\|}\right)^{T}\left(\frac{y-\bar{y}}{\|y-\bar{y}\|}\right)$ to show that the correlation between x and y is $\frac{13}{14}$. Hint: To make your life a little easier, $\bar{x}=\bar{y}=0$ here.
2. Consider a line $\hat{y}=a+b x$. Using the vector x, write \hat{y} as vector with three entries. Each entry should be a function of a and b.
3. Find a formula for the sum of squared residuals $\|\hat{y}-y\|^{2}$. Your formula should be a function of a and b.
4. Differentiate the sum of squared residuals with respect to a and b to find the best fit regression line.

There is a different way to approach least squares regression using linear algebra instead of calculus. The vector \hat{y} is a linear transformation of the two variables a and b, so you can write this as a matrix equation:

$$
\hat{y}=\left[\begin{array}{cc}
1 & 3 \\
1 & 5 \\
1 & -8
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

The goal is to find the value of \hat{y} that is the closest to y. But \hat{y} is stuck in the range (i.e., column space) of the matrix

$$
X=\left[\begin{array}{cc}
\mid & \mid \\
1 & x \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
1 & 3 \\
1 & 5 \\
1 & -8
\end{array}\right]
$$

To find $\left[\begin{array}{l}a \\ b\end{array}\right]$, we need find values of a and b that make the vector $\hat{y}-y$ orthogonal to the column space of X. This is the same as requiring

$$
X^{T}(\hat{y}-y)=0
$$

because that just means that $\hat{y}-y$ is orthogonal to every column of X. Rewriting this equation, we get the normal equation for linear regression:

$$
X^{T} X\left[\begin{array}{l}
a \\
b
\end{array}\right]=X^{T} y
$$

5. Calculate $X^{T} X$ and $X^{T} y$. Remember that y is the vector $\left[\begin{array}{c}0 \\ 1 \\ -1\end{array}\right]$.
6. Use linear algebra to solve the normal equation and find $\left[\begin{array}{l}a \\ b\end{array}\right]$.
