## Least Squares Regression

## Math 422 - Workshop

Suppose we have three data points with x and y coordinates given by the following table:



- 1. Use the formula  $r = \left(\frac{x-\bar{x}}{\|x-\bar{x}\|}\right)^T \left(\frac{y-\bar{y}}{\|y-\bar{y}\|}\right)$  to show that the correlation between x and y is  $\frac{13}{14}$ . Hint: To make your life a little easier,  $\bar{x} = \bar{y} = 0$  here.
- 2. Consider a line  $\hat{y} = a + bx$ . Using the vector x, write  $\hat{y}$  as vector with three entries. Each entry should be a function of a and b.
- 3. Find a formula for the sum of squared residuals  $\|\hat{y} y\|^2$ . Your formula should be a function of a and b.
- 4. Differentiate the sum of squared residuals with respect to a and b to find the best fit regression line.

There is a different way to approach least squares regression using linear algebra instead of calculus. The vector  $\hat{y}$  is a linear transformation of the two variables a and b, so you can write this as a matrix equation:

$$\hat{y} = \begin{bmatrix} 1 & 3\\ 1 & 5\\ 1 & -8 \end{bmatrix} \begin{bmatrix} a\\ b \end{bmatrix}.$$

The goal is to find the value of  $\hat{y}$  that is the closest to y. But  $\hat{y}$  is stuck in the range (i.e., column space) of the matrix



To find  $\begin{bmatrix} a \\ b \end{bmatrix}$ , we need find values of a and b that make the vector  $\hat{y} - y$  orthogonal to the column space of X. This is the same as requiring

$$X^T(\hat{y} - y) = 0,$$

because that just means that  $\hat{y} - y$  is orthogonal to every column of X. Rewriting this equation, we get the **normal equation** for linear regression:

$$X^T X \begin{bmatrix} a \\ b \end{bmatrix} = X^T y.$$

- 5. Calculate  $X^T X$  and  $X^T y$ . Remember that y is the vector  $\begin{bmatrix} 0\\1\\-1 \end{bmatrix}$ .
- 6. Use linear algebra to solve the normal equation and find  $\begin{bmatrix} a \\ b \end{bmatrix}$ .