Midterm \#2 - Probability and Statistics II

1. (30 points) Suppose that X_{1}, X_{2}, X_{3} are i.i.d., normal random variables with mean 0 and variance 1. Let

$$
\left[\begin{array}{l}
Y_{1} \\
Y_{2}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1
\end{array}\right]\left[\begin{array}{l}
X_{1} \\
X_{2} \\
X_{3}
\end{array}\right]
$$

(a) What is the covariance matrix for the random vector X ?

Solution: Since all of the X_{i} 's are independent, $\operatorname{Cov}\left(X_{i}, X_{j}\right)=0$, unless $i=j$. So all of the entries of the covariance matrix are zero, except for the entries of the diagonal. The entries on the diagonal are all one since each X_{i} has variance equal to 1 . Therefore Σ_{X} is the 3 -by- 3 identity matrix

$$
\Sigma_{X}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(b) What is the covariance matrix for the random vector Y ?

Solution: $\Sigma_{Y}=A \Sigma_{X} A^{T}=A A^{T}$ where A is the matrix in the problem. Calculating $A A^{T}$ gives:

$$
\Sigma_{Y}=\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]
$$

(c) Are Y_{1} and Y_{2} independent random variables?

Solution: No, because $\operatorname{Cov}\left(Y_{1}, Y_{2}\right)=-1 \neq 0$. The covariance of Y_{1} and Y_{2} is the entry in row 1 , column 2 of Σ_{Y}.
(d) What is the variance of Y_{1} ?

Solution: $\operatorname{Var}\left(Y_{1}\right)=\operatorname{Cov}\left(Y_{1}, Y_{1}\right)=2$. The variance of Y_{1} is the entry in row 1, column 1 of Σ_{Y}.
2. (20 points) The following linear equation has no solutions.

$$
\left[\begin{array}{cc}
1 & 0 \\
1 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right] .
$$

Show that $b=\left[\begin{array}{l}3 / 2 \\ 3 / 2\end{array}\right]$ is the least squares solution.
Solution: One way to show this is to show that b satisfies the normal equations $X^{T} X b=X^{T} y$. Calculating both sides gives:

$$
X^{T} X b=\left[\begin{array}{lll}
3 & -1 ;-1 & 1
\end{array}\right]\left[\begin{array}{l}
3 / 2 \\
3 / 2
\end{array}\right]=\left[\begin{array}{l}
3 \\
0
\end{array}\right]
$$

which is the same thing you get if you calculate:

$$
X^{T} y=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

3. (20 points) The least squares solution $b=\left[\begin{array}{l}3 / 2 \\ 3 / 2\end{array}\right]$ to the system of equations

$$
\left[\begin{array}{cc}
1 & 0 \\
1 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
b_{0} \\
b_{1}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
2
\end{array}\right]
$$

corresponds to a line that is the best fit regression line for three points in \mathbb{R}^{2}. Draw and label a graph showing the line and the three points. Does the line intersect any of the three points?

Solution:

Yes, the line $y=\frac{3}{2}+\frac{3}{2} x$ does intersect the point $(-1,0)$.
4. (15 points) Suppose that x and y are two orthogonal vectors in \mathbb{R}^{n} and $\|x\|=\|y\|=1$. Let $P=x x^{T}+y y^{T}$. Calculate P^{2} and simplify as much as you can.

Solution:

$$
\begin{aligned}
P^{2}=\left(x x^{T}+y y^{T}\right)\left(x x^{T}+y y^{T}\right) & =x x^{T} x x^{T}+x x^{T} y y^{T}+y y^{T} x x^{T}+y y^{T} y y^{T} \\
& =x\left(x^{T} x\right) x^{T}+x\left(x^{T} y\right) y^{T}+y\left(y^{T} x\right) x^{T}+y\left(y^{T} y\right) y^{T}
\end{aligned}
$$

Since x and y are orthogonal, $x^{T} y=y^{T} x=0$, so the two middle terms are zero. Since $\|x\|=\|y\|=1$, the end terms become: $x x^{T}+y y^{T}$, which means that $P^{2}=P$.
5. (15 points) Suppose that you roll an ordinary six-sided die. Let X be the number it lands on and let $Y=6$ if the result is a six and 0 otherwise. What is the covariance of X and Y ?

Solution: $\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)$. We know that $E(X)=3.5$ and $E(Y)=1$. Also, $E(X Y)=6$, since $X Y$ is either 36 if the die lands on six, or 0 otherwise. Therefore,

$$
\operatorname{Cov}(X, Y)=6-3.5=2.5=\frac{5}{2}
$$

Formulas

- Normal Equations To find the least squares solution of $X b=y$, solve

$$
X^{T} X b=X^{T} y
$$

- Inverse of 2-by-2 Matrix If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then

$$
A^{-1}=\frac{1}{\operatorname{det} A}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

- Covariance For random variables X and Y,

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)
$$

Also,

$$
\operatorname{Cov}(X, Y)=E(X Y)-E(X) E(Y)
$$

- Covariance Matrix For a random vector $X=\left(X_{1}, \ldots, X_{n}\right)^{T}$,

$$
\Sigma_{X}=\left[\begin{array}{ccc}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\vdots & & \vdots \\
\operatorname{cov}\left(X_{n}, X_{1}\right) & \ldots & \operatorname{Cov}\left(X_{n}, X_{n}\right)
\end{array}\right]
$$

- Covariance Matries \& Linear Transformations If X and Y are random vectors such that $Y=A X$ where $A \in \mathbb{R}^{m \times n}$, then

$$
\Sigma_{Y}=A \Sigma_{X} A^{T}
$$

- Multivariate Normal Density

$$
f_{X}(x)=\frac{1}{(2 \pi)^{n / 2}\left|\Sigma_{X}\right|^{1 / 2}} \exp \left(-\frac{1}{2}\left(x-\mu_{X}\right)^{T} \Sigma_{X}^{-1}\left(x-\mu_{X}\right)\right)
$$

