1.
$$i^{14}$$

2.
$$(5i)(-2i)(3i)$$

3.
$$(3+i)^2$$

4. Im
$$\left(\frac{12}{5-i}\right)$$

5.
$$(3-2i)(4+i)$$

$$6. \ \frac{1-i}{1+i}$$

7.
$$\left| \frac{1}{5+12i} \right|$$

8.
$$\overline{(3+4i)(1-i)}$$

9.
$$\overline{e^{i\frac{\pi}{3}}}$$

Convert the following from rectangular to polar form.

10.
$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$

11.
$$i-1$$

$$12. \ \frac{i}{1+i}$$

Convert the following from polar to rectangular form.

13.
$$e^{5\pi i/3}$$

14.
$$(\sqrt{3}e^{7\pi i/12})(\sqrt{12}e^{29\pi i/12})$$

 $Convert\ to\ polar\ or\ rectangular\ form\ to\ evaluate\ the\ following.$

15.
$$\sqrt{2i}$$

16.
$$i^i$$

17. Re
$$(2e^{\pi i/6})$$

18.
$$(i-1)^6$$

19.
$$|1 - e^{i\frac{\pi}{4}}|$$

- 20. We are going to find the roots of the polynomial equation $z^2 + 2z + (1-i) = 0$ two ways.
 - (a) One way to solve the equation is to notice that $z^2 + 2z + 1 = (z+1)^2$, so the equation is the same as $(z+1)^2 = i$. Solve this by taking the square root of both sides. Remember that all non-zero complex numbers have two square-roots!

(b) Now try using the quadratic formula $z =$ before?	$= \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$	Do you get	the same	answer a	ıs
---	---	------------	----------	----------	----

- 21. Roots of Unity An *n*-th root of unity is a number z such that $z^n = 1$.
 - (a) Find all three 3rd roots of unity, and use your answer to factor the polynomial $z^3 1$.
 - (b) Find a formula for the all n n-th roots of unity.
- 22. If $z \in \mathbb{C}$ is a root of a polynomial p with real coefficients, then \overline{z} is also a root of that polynomial because $p(\overline{z}) = \overline{p(z)}$. Find an example to show that this is not true for all polynomials with complex coefficients.
- 23. Prove that the complex-conjugate \overline{z} is the same as the reciprocal 1/z if and only if |z|=1. Hint: First show that $|z|^2=z\cdot\overline{z}$ for every $z\in\mathbb{C}$.
- 24. For any complex number $w = re^{i\omega}$, find a formula for all n roots of $z^n w = 0$.
- 25. Let $z = 1 + \frac{i}{100}$. Find formulas for the real and imaginary parts of z^n (for any integer n) that don't involve any complex numbers.