Math 444 - Complex Limits

Name:

- A sequence is a function $s: \mathbb{N} \to \mathbb{C}$. Notation: We usually write s_n instead of s(n) for sequences.
- A sequence s_n converges to a point $z \in C$ if for every open disk centered at z, there are only finitely many values of n for which s_n is outside the disk. In other words, for every $\epsilon > 0$, there is a value N large enough so that $|s_n z| < \epsilon$ for every $n \ge N$.
- For a function $f: \mathbb{C} \to \mathbb{C}$, we say that the **limit** of f as z approaches z_0 is L, that is,

$$\lim_{z \to z_0} f(z) = L$$

if and only if $f(s_n)$ converges to L for every sequence s_n that both converges to z and is never exactly equal to z.

- A function $f: \mathbb{C} \to \mathbb{C}$ is **continuous** at z_0 if $\lim_{z \to z_0} f(z) = f(z_0)$. We also say f is **continuous on a set** G if f is continuous at every point in G.
- 1. Show that the sequence $s_k = \frac{1}{\sqrt{k}} e^{i\frac{k\pi}{6}}$ converges to 0. For any fixed $\epsilon > 0$ find a formula for an N that is big enough so that $|s_k 0| < \epsilon$ whenever $k \ge N$. Your formula for N such be a function of ϵ .

2. If z_k is a sequence that converges to $a \in \mathbb{C}$, and $c \in \mathbb{C}$ is a constant, show that $c z_k$ converges to c a.

3. One method to calculate a complex limit $\lim_{z\to z_0} f(z)$ is to make the substitution $z=z_0+re^{i\theta}$ and calculate $f(z_0+e^{i\theta})$. If the expression does not depend on θ as $r\to 0$, then you can find the limit by letting r=0. Try this on the function $f(z)=z^2$.

4. Let $f(z) = \frac{\overline{z}}{z}$.	Show that the limit	$\lim_{z \to 0} f(z)$	does not exist.	Hint:	Try the substitution	from the
previous proble	em. What goes wrong	?				

5. For any complex numbers
$$a,b,w,z\in\mathbb{C}$$
 prove that $|(z+w)-(a+b)|\leq |z-a|+|w-b|$.

6. Suppose that
$$z_k$$
 is a sequence in $\mathbb C$ that converges to a and w_k is a sequence that converges to b . Use the definition of convergence to show that $z_k + w_k$ converges to $a + b$. Hint: By the definition of convergence, for any $\epsilon > 0$, there is an M such that $|z_k - a| < \epsilon/2$ when $k \ge M$. Likewise, there is an N such that $|w_k - b| < \epsilon/2$ when $k \ge N$.

^{7.} Suppose that z_k is a sequence in \mathbb{C} that converges to a nonzero complex number a. Prove that there is an N large enough so that $\frac{1}{2}|a| < |z_k|$ for all $k \ge N$.