Math 444 - Cauchy's Integral Formula

Name: \qquad

1. Let $\gamma(t)=2 e^{2 i t}-e^{i t}, 0 \leq t \leq 2 \pi$. This path loops around the origin twice as shown below. Calculate $\int_{\gamma} \frac{d z}{z}$ for this path. Hint: You can make it easier if you break the path into two simple closed curves, an inner one and an outer one, then apply the Cauchy Integral Formula.

2. Let γ be the ellipse $|z-1|+|z-2|=3$. Use a partial fraction decomposition to calculate

$$
\int_{\gamma} \frac{z}{(z-1)(z-2)} d z
$$

3. Compute $\oint_{C} \frac{e^{z}}{z(z-3)} d z$ where C is the circle of radius 2 around $z=3$.
4. Compute $\oint_{|z|=4} \frac{e^{z}}{z(z-3)} d z$.
5. What if you calculate the integral in problem 2 by splitting the elliptical path into a sum of two separate integrals along positively oriented paths γ_{1} and γ_{2} as shown in the figure below? Find the values of $\int_{\gamma_{1}} \frac{z}{(z-1)(z-2)} d z$ and $\int_{\gamma_{2}} \frac{z}{(z-1)(z-2)} d z$. Check to see if the sum of these two integrals is the same as the integral in problem 2.

6. Calculate $\oint_{|z|=2} \frac{e^{z}}{z^{2}+1} d z$.
7. If $p(z)$ is a polynomial with no roots on the unit circle, then prove that the integral of $\frac{1}{z}$ on the path $\gamma(t)=p\left(e^{i t}\right)$ with $0 \leq t \leq 2 \pi$ is the same as $\oint_{C} \frac{p^{\prime}(z)}{p(z)} d z$ where C is the unit circle.
