Math 444 - Taylor Series

Name:
Find Taylor series for the following functions with the given centers.

1. $f(x)=\frac{\sin \left(z^{3}\right)}{z^{2}}$ centered at 0 .
2. $f(x)=\frac{1}{z+2 i}$ centered at 0 .
3. $f(x)=\log (z+2 i)$ centered at 0 . Hint integrate the last Taylor series!
4. e^{z} centered at $c=\pi i$. For this one you will have to use the Taylor series formula.
5. Suppose that $f(z)=(z-a)^{m} g(z)$ where g is holomorphic in some disk around a and $g(a) \neq 0$ in that disk. Show that

$$
\frac{f^{\prime}(z)}{f(z)}=\frac{g^{\prime}(z)}{g(z)}+\frac{m}{z-a} .
$$

6. If γ is a closed, piecewise smooth curve in the disk where the function g in the last problem is holomorphic, then the path $f(\gamma(t))$ has winding number

$$
\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z
$$

Show that this winding number must equal m if γ is a simple curve around a.

