Math 444 - Using Sage

Name:

Sage is a free and open source computer algebra system built on Python. To try Sage out, you can use the SageMathCell https://sagecell.sagemath.org/. If you want to use Sage more, you can download it on your own computer, or you can sign up for a CoCalc account. For this assignment, just enter the URL for above into your browser.

Defining Symbolic Variables

Sage is a computer algebra system, so it can simplify, expand, and factor algebraic expressions. To enter an expression with variables, you first have to tell Sage which symbols are variables. I like to use x, y, t for real variables and w, z for complex variables. Here is how to do this in Sage.

var('x,y,t',domain='real')
w, z = symbols('w,z')

Notice that you don't need to tell Sage that w and z are complex since that is the default assumption.

Complex Numbers in Sage

In Python, complex numbers are entered using the symbol 1j. Sage is built on Python, so you can use 1j, but you can also use a capital or lower case i symbol to represent $\sqrt{-1}$. So you can enter complex numbers like this 3+4j or like this 3+4*i. There is a difference between the two formulas. If you do a calculation with 3+4j, Sage will give an (imprecise) decimal result. If you use 3+4*i, then Sage tries to give an exact answer. Try this code and write down the output:

print(1/(3+4j))
print(1/(3+4*I))

Trying Things Out

Try the following commands. What happens with each one?

print(expand((z-2*I)*(z+3*I)))
print(diff(exp(z)/sin(z),z))

Substituting Values

In Sage you can input values into symbolic expressions. For example, if $f = z^2$, then you can plug z = 5 into f by doing the following:

```
f=z^2
print(f(5))
print(f(z=5)) # This is the preferred method for substituting values
```

Lists and List Comprehensions

To get all one hundred 100th-roots of unity, you can use a list comprehension. In Python (and Sage) a list is a collection of values in brackets. A list comprehension like the one below is a quick way to get a list of values.

```
[exp(2*pi*i/100*k) for k in range(100)]
```

Plotting Points and Curves in $\ensuremath{\mathbb{C}}$

You can plot the list of 100th roots of unity using the list_plot function:

```
list_plot([exp(2*pi*i/100*k) for k in range(100)],aspect_ratio=1)
# You can also change these default arguments: color='blue', xmin=-1, xmax=1, ymin=-1, ymax=1
```

You can plot a curve using the parametric_plot() function:

```
f = exp(i*t)
parametric_plot( (real(f),imag(f)), (t,0,pi/2))
```

Exercises

1. Use Sage to find the derivative of $f(z) = \frac{z^2 + \cos z}{e^z}$.

2. Do the following calculations with Sage:

(a) Simplify
$$\frac{1}{(5+12i)^2}$$
 (b) Compute $(3+4i)^4$

3. Find the sum of the imaginary parts of the complex numbers $\{(1+i)^k : k \in \mathbb{N} \text{ and } 1 \leq k \leq 10\}$. Hint: Make sure to include k = 10 in your sum.

4. Make a plot showing the points in the set $\{(1 + \frac{i}{100})^k : k \in \mathbb{N} \text{ and } 0 \le k < 1000\}.$