Formula Sheet

Quadratic Formula

$$ax^{2} + bx + c = 0$$
 when $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$

Common Angles

Double-Angle Formulas

$$\cos 2\theta = \cos^2 \theta - \sin^2 \theta$$
$$= 2\cos^2 \theta - 1$$

$$\sin 2\theta = 2\sin\theta\cos\theta$$

Principal Logarithm The argument is restricted to $(-\pi, \pi]$.

$$Log(z) = \ln|z| + i \operatorname{Arg} z$$

Cauchy's Formula for Derivatives When f is holomorphic and C is a simple closed curve around w,

$$f^{(n)}(w) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-w)^{n+1}} dz.$$

Note: When n = 0 this is Cauchy's Integral formula since 0! = 1.

Winding Number of γ Around 0 For a piecewise smooth, closed curve $\gamma:[a,b]\to\mathbb{C}$:

Winding Number =
$$\frac{1}{2\pi i} \oint_{\gamma} \frac{dz}{z} = \frac{1}{2\pi i} \int_{a}^{b} \frac{\gamma'(t)}{\gamma(t)} dt$$
.