Formulas Sheet

Standardized Normal Data

$$
z=\frac{x-\mu}{\sigma} \text { or } \frac{\text { location }- \text { middle }}{\text { std. dev. }}
$$

Addition and Multiplication Rules for Probability

$$
P(A \text { or } B)=P(A)+P(B)-P(A \text { and } B)
$$

$P(A$ and $B)=P(A) \cdot P(B)^{*}$
(* only if A and B are independent)

Conditional Probability

$$
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)}
$$

Standard Deviations for Sampling Distributions

$$
\sigma_{\bar{x}}=\frac{\sigma}{\sqrt{N}} \quad \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{N}}
$$

Confidence Interval for a Population Proportion

$$
\hat{p} \pm z^{*} \sqrt{\frac{\hat{p}(1-\hat{p})}{N}}
$$

where the critical z-value comes from this table:

Confidence level	90%	95%	99%	99.9%
z^{*}	1.645	1.96	2.576	3.291

