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o To traverse a list is to move systematically through its nodes,
“visiting” each node along the way. Forward traversals go
from head to tail. Reverse traversals go from tail to head.

@ The meaning of “visiting” a node is left unspecified at
this point.

@ The meaning will be specified at the time of the
traversal.
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The traverse() Function

List Traversals

void traverse (void (xvisit) (Iteratoré&));

@ Introduce a new List member function traverse ().
@ The parameter visit is a pointer to a function.
@ The visit () function has prototype

void visit (Iterator& it);
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Traversal Implementation

List Traversals

void traverse (void (*visit) (Iterator&))

{

for (Iterator it = begin(); it != end(); ++it)
visit (it);
return;

@ The traverse () function is implemented as a for
loop.
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void print (Iterator& it)
List Traversals {

cout << *it << endl;
return;

list.traverse (print) ;

@ For example, we could write a print () function and
then use traverse () to print all the values in the list.
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@ A reverse iterator is an iterator that advances in the
opposite direction, from tail to head.
Reverse

lterators @ ltis initialized to the last element in the list.

@ It “advances” until it has gone beyond the head of the
list.

@ Because a reverse iterator is an iterator, we will derive
the ReverseIterator class from the Iterator
class.
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Reverse
Iterators

ReverselIterator Member Functions

Additional ReverseIterator Member Functions

@ Reverselterator (const
LinkedListwIter<T>* 1st,
LinkedListNode<T>* p);

Construct a ReverselIterator
@ Reverselterator& operator++();
Advance the ReverseIterator to the next node.
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Additional LinkedListwIter Member Functions
ﬁjrva‘jgsg @ Reverselterator rbegin() const;
Create a ReverseIterator set to the beginning of
the list.
@ Reverselterator rend() const;
Create a ReverseIterator set to the end of the list.
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@ The other LinkedListwIter member functions that

Reverse use iterators, such as the iterator version of
foraors getElement (), can accept reverse iterators as well
because. ..

@ That is because

A Reverselterator IS-A Iterator.
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e Introduce a stack data member.

Feveres e Push NULL onto the stack.

Iterators e Then push the addresses of the nodes onto the stack
as the list is traversed from head to tail.

e Stop with all but the final NULL pointer on the stack.

o Now the reverse iterator is initialize.

@ To increment the reverse list iterator

e Pop an address off the stack.
e Assign it to the node pointer.
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@ In alist, we could traverse in only two ways:

o Head to tail (forward)
o Tail to head (reverse)

Binary Tree @ In a binary tree, there is a variety of ways in which we
lterators can traverse the structure.

o Pre-order

In-order

Post-order

Level-order, etc.
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@ Accordingly, we create the following binary tree iterator
classes.

Binary Tree @ PreorderIterator class

lterators @ InorderIterator class

@ PostorderIterator class

@ LevelorderIterator class
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@ Furthermore, these are all subclasses of a base class
Iterator.

Binary Tree @ By using inheritance, all we have to implement for each

lterators subclass is

@ The constructor.
e The ++ operator.
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@ We will build on what we learned about reverse
iterators for lists.

@ To reach the “next” node from a root node, a preorder
iterator must move to the root of the left subtree.

@ It should also push the pointer to the right subtree, if
there is one.
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Preorder lterator Constructor
PreorderIterator (const BinaryTree<T>x tr,

BinaryTreeNode<T>x rt) : Iterator(tr, rt)
{stack.push (NULL) ; }

Preorder Iterators
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if (node != NULL)

{
// Store pointer to right subtree

if (node->rightNode () != NULL)
stack.push (node->rightNode ()) ;
FEs e // Go to root of left subtree
if (node—->leftNode () != NULL)

node = node->leftNode () ;
// Or, use stack to get next node
else
node = stack.pop();
}

return x+this;
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@ To reach the “next” node from a root node, an inorder
iterator must travel to the right subtree, and then as far
left as possible, pushing node pointers along the way.
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S InorderIterator (const BinaryTree<T>x* tr,
obb |.
Koether BinaryTreeNode<T>x rt) : Iterator(tr, rt)

stack.push (NULL) ;
// Find the leftmost node

Inorder Iterators if (node != NULL)
while (node->leftNode () != NULL)
{
stack.push (node) ;
node = node->leftNode () ;
}

return;
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if (node != NULL)
{
if (node->rightNode () != NULL)
{
node = node->rightNode () ;
while (node->leftNode() != NULL)
Inorder lterators {

stack.push (node) ;
node = node->leftNode () ;

}
else
node = stack.pop();
}

return +this;
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Postorder Iterators

Binary Tree Postorder lterators

@ To the “next” node from a root node, a postorder iterator
must do the following.

@ If the current node is a left child, then the iterator must
following the leftmost branch of the sibling right subtree
all the way to a leaf node, pushing nodes along the way.
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Kosther BinaryTreeNode<T>* rt) : Iterator(tr, rt)

{
stack.push (NULL) ;
// Find the leftmost leaf

if (node != NULL)

while (node->leftNode () != NULL

| | node->rightNode () != NULL)

{

Postorder Iterators stack. push (node) ;
if (node->leftNode () != NULL)
node = node->leftNode () ;

else

node = node->rightNode () ;
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Postorder Iterators

Binary Tree Postorder lterators

Postorder Iterator opera

PostorderIterator& operator++ ()

{

if (node != NULL)
{

BinaryTreeNode<T>x parent = stack.top();

if (parent != NULL && node == parent->leftNode ()
&& parent->rightNode () != NULL)

{
node = parent->rightNode () ;
while (node->leftNode() != NULL

| | node->rightNode () != NULL)

{
stack.push (node) ;
if (node->leftNode() != NULL)

node = node->leftNode () ;
else

node = node->rightNode () ;
}

else
{
stack.pop () ;
node = parent;
}
}

return *this;
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@ Create a LevelorderIterator class for binary trees.

Assignment
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