List and
Binary Tree
Iterator Imple-
mentation

List and Binary Tree lterator Implementation

Lecture 37
Section 9.4

Robb T. Koether

Hampden-Sydney College

Wed, Apr 22, 2009

Outline

List and
Binary Tree
Iterator Imple-
mentation

0 List Traversals
e Reverse lterators

e Binary Tree lterators
@ Preorder lterators
@ Inorder lterators
@ Postorder lterators

6 Assignment

List Traversals

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether Definition (Traverse)
o To traverse a list is to move systematically through its nodes,
“visiting” each node along the way. Forward traversals go
from head to tail. Reverse traversals go from tail to head.

@ The meaning of “visiting” a node is left unspecified at
this point.

@ The meaning will be specified at the time of the
traversal.

The Traversal Function

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether

The traverse() Function

List Traversals

void traverse (void (xvisit) (Iteratoré&));

@ Introduce a new List member function traverse ().
@ The parameter visit is a pointer to a function.
@ The visit () function has prototype

void visit (Iterator& it);

Traversals and lterators

List and
Binary Tree
Iterator Imple-
mentation

Robb T.
Koether

Traversal Implementation

List Traversals

void traverse (void (*visit) (Iterator&))

{

for (Iterator it = begin(); it != end(); ++it)
visit (it);
return;

@ The traverse () function is implemented as a for
loop.

Example - Print the List

List and
Binary Tree
Iterator Imple-
mentation

BV The print () Function

Koether

void print (Iterator& it)
List Traversals {

cout << *it << endl;
return;

list.traverse (print) ;

@ For example, we could write a print () function and
then use traverse () to print all the values in the list.

Reverse lterators

List and
Binary Tree
Iterator Imple-
mentation

Robb T.
Koether

@ A reverse iterator is an iterator that advances in the
opposite direction, from tail to head.
Reverse

lterators @ ltis initialized to the last element in the list.

@ It “advances” until it has gone beyond the head of the
list.

@ Because a reverse iterator is an iterator, we will derive
the ReverseIterator class from the Iterator
class.

List and
Binary Tree

Iterator Imple-

mentation

Robb T.

Koether

Reverse
Iterators

ReverselIterator Member Functions

Additional ReverseIterator Member Functions

@ Reverselterator (const
LinkedListwIter<T>* 1st,
LinkedListNode<T>* p);

Construct a ReverselIterator
@ Reverselterator& operator++();
Advance the ReverseIterator to the next node.

LinkedListwIter Member Functions

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether

Additional LinkedListwIter Member Functions
ﬁjrva‘jgsg @ Reverselterator rbegin() const;
Create a ReverseIterator set to the beginning of
the list.
@ Reverselterator rend() const;
Create a ReverseIterator set to the end of the list.

LinkedListwIter Member Functions

List and
Binary Tree
Iterator Imple-
mentation

@ The other LinkedListwIter member functions that

Reverse use iterators, such as the iterator version of
foraors getElement (), can accept reverse iterators as well
because. ..

@ That is because

A Reverselterator IS-A Iterator.

Implemention of Reverse Iterators

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether @ To construct a reverse iterator for a linked list,

e Introduce a stack data member.

Feveres e Push NULL onto the stack.

Iterators e Then push the addresses of the nodes onto the stack
as the list is traversed from head to tail.

e Stop with all but the final NULL pointer on the stack.

o Now the reverse iterator is initialize.

@ To increment the reverse list iterator

e Pop an address off the stack.
e Assign it to the node pointer.

Binary Tree Iterators

List and
Binary Tree
Iterator Imple-
mentation

@ In alist, we could traverse in only two ways:

o Head to tail (forward)
o Tail to head (reverse)

Binary Tree @ In a binary tree, there is a variety of ways in which we
lterators can traverse the structure.

o Pre-order

In-order

Post-order

Level-order, etc.

Binary Tree Iterators

List and
Binary Tree
Iterator Imple-
mentation

@ Accordingly, we create the following binary tree iterator
classes.

Binary Tree @ PreorderIterator class

lterators @ InorderIterator class

@ PostorderIterator class

@ LevelorderIterator class

Binary Tree Iterators

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether

@ Furthermore, these are all subclasses of a base class
Iterator.

Binary Tree @ By using inheritance, all we have to implement for each

lterators subclass is

@ The constructor.
e The ++ operator.

Binary Tree Preorder lterators

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether

@ We will build on what we learned about reverse
iterators for lists.

@ To reach the “next” node from a root node, a preorder
iterator must move to the root of the left subtree.

@ It should also push the pointer to the right subtree, if
there is one.

Binary Tree Preorder lterators

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether

Preorder lterator Constructor
PreorderIterator (const BinaryTree<T>x tr,

BinaryTreeNode<T>x rt) : Iterator(tr, rt)
{stack.push (NULL) ; }

Preorder Iterators

Binary Tree Preorder lterators

List and
Binary Tree Preorder lterator operator++ ()
Iterator Imple-
mentation PreorderIteratoré& operator++ ()

Robb T. {
Koether

if (node != NULL)

{
// Store pointer to right subtree

if (node->rightNode () != NULL)
stack.push (node->rightNode ()) ;
FEs e // Go to root of left subtree
if (node—->leftNode () != NULL)

node = node->leftNode () ;
// Or, use stack to get next node
else
node = stack.pop();
}

return x+this;

Binary Tree Inorder lterators

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether

@ To reach the “next” node from a root node, an inorder
iterator must travel to the right subtree, and then as far
left as possible, pushing node pointers along the way.

Binary Tree Inorder lterators

List and
Binary Tree
Iterator Imple- I
mentation

norder lterator Constructor

S InorderIterator (const BinaryTree<T>x* tr,
obb |.
Koether BinaryTreeNode<T>x rt) : Iterator(tr, rt)

stack.push (NULL) ;
// Find the leftmost node

Inorder Iterators if (node != NULL)
while (node->leftNode () != NULL)
{
stack.push (node) ;
node = node->leftNode () ;
}

return;

Binary Tree Inorder lterators

List and
Binary Tree

lterator Imple- WMl [nOrder lterator operator++ ()

mentation

Robb T InorderIterator& operator++ ()
Koether {
if (node != NULL)
{
if (node->rightNode () != NULL)
{
node = node->rightNode () ;
while (node->leftNode() != NULL)
Inorder lterators {

stack.push (node) ;
node = node->leftNode () ;

}
else
node = stack.pop();
}

return +this;

List and
Binary Tree

Iterator Imple-

mentation

Robb T.

Koether

Postorder Iterators

Binary Tree Postorder lterators

@ To the “next” node from a root node, a postorder iterator
must do the following.

@ If the current node is a left child, then the iterator must
following the leftmost branch of the sibling right subtree
all the way to a leaf node, pushing nodes along the way.

Binary Tree Postorder lterators

List and
Binary Tree
Iterator Imple-

mentation Postorder Iterator Co tor

Robb T. PostorderIterator (const BinaryTree<T>x tr,
Kosther BinaryTreeNode<T>* rt) : Iterator(tr, rt)

{
stack.push (NULL) ;
// Find the leftmost leaf

if (node != NULL)

while (node->leftNode () != NULL

| | node->rightNode () != NULL)

{

Postorder Iterators stack. push (node) ;
if (node->leftNode () != NULL)
node = node->leftNode () ;

else

node = node->rightNode () ;

List and
Binary Tree
Iterator Imple-
mentation

Robb T.
Koether

Postorder Iterators

Binary Tree Postorder lterators

Postorder Iterator opera

PostorderIterator& operator++ ()

{

if (node != NULL)
{

BinaryTreeNode<T>x parent = stack.top();

if (parent != NULL && node == parent->leftNode ()
&& parent->rightNode () != NULL)

{
node = parent->rightNode () ;
while (node->leftNode() != NULL

| | node->rightNode () != NULL)

{
stack.push (node) ;
if (node->leftNode() != NULL)

node = node->leftNode () ;
else

node = node->rightNode () ;
}

else
{
stack.pop () ;
node = parent;
}
}

return *this;

Assignment

List and
Binary Tree
Iterator Imple-
mentation

Robb T.

Koether

@ Create a LevelorderIterator class for binary trees.

Assignment

	List Traversals
	Reverse Iterators
	Binary Tree Iterators
	Preorder Iterators
	Inorder Iterators
	Postorder Iterators

	Assignment

