Homework 21

1. In class we found that if we rotate about the axis $(\frac{1}{3}, \frac{2}{3}, \frac{2}{3})$ through an angle of 90°, then the rotation matrix is

$$\begin{pmatrix}
1/9 & -4/9 & 8/9 & 0 \\
8/9 & 4/9 & 1/9 & 0 \\
-4/9 & 7/9 & 4/9 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$

Find the images of the points i = (1, 0, 0, 1), j = (0, 1, 0, 1), and k = (0, 0, 1, 1) under this rotation.

- 2. Given that the inverse of a rotation matrix is the same as its transpose, write the inverse of the rotation matrix in the first exercise. What do you notice about the coordinates of these images?
- 3. Find the images of the points i, j, and k under the inverse rotation in exercise 2. These images are the *pre-images* of the points i, j, and k under the original rotation. What do you notice about the coordinates of these pre-images?
- 4. Let the axis of rotation be given by the vector $\mathbf{v} = (\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$ and let the angle or rotation be 180°. Find the angle β that was discussed in class and then find $\cos \beta$ and $\sin \beta$.
- 5. Find the matrix $\mathbf{R}_{y}(\beta)$.
- 6. Find the vector $\mathbf{v}' = \mathbf{R}_y(\beta)\mathbf{v}$.
- 7. Find the angle γ that was discussed in class and then find $\cos \gamma$ and $\sin \gamma$.
- 8. Find the matrix $\mathbf{R}_z(\gamma)$.
- 9. Find the vector $\mathbf{v}'' = \mathbf{R}_z(\gamma)\mathbf{v}'$ and verify that it lies along the positive x-axis.
- 10. Find the matrix $\mathbf{R}_x(\alpha)$, where $\alpha = 180^\circ$, the original angle of rotation.
- 11. Find the inverses of the matrices $\mathbf{R}_y(\beta)$ and $\mathbf{R}_z(\gamma)$. Remember that the inverse of a rotation matrix is the same as its transpose.
- 12. Find the product $\mathbf{M} = \mathbf{R}_y(\beta)^{-1}\mathbf{R}_z(\gamma)^{-1}\mathbf{R}_x(\alpha)\mathbf{R}_z(\gamma)\mathbf{R}_y(\beta)$.
- 13. Since a rotation of 180° applied twice will return all points to their original positions, verify that the square of the matrix \mathbf{M} is the identity matrix.
- 14. Any point lying on the axis of rotation, given by the vector $\mathbf{v} = (\frac{2}{3}, \frac{1}{3}, \frac{2}{3})$, is of the form $P = (\frac{2t}{3}, \frac{t}{3}, \frac{2t}{3})$. Verify that any such point is mapped to itself by \mathbf{M} . That is, verify that $\mathbf{M}P = P$.