Lecture 16 Sections 3.1.9, 4.9

Robb T. Koether

Hampden-Sydney College

Wed, Oct 5, 2011

Outline

- Meshes
- Cross Products
- Finding Surface Normals
 - Using Neighboring Vertices
 - Newell's Algorithm
- 4 Assignment

Outline

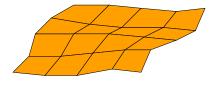
- Meshes
- Cross Products
 - Finding Surface Normals
 - Using Neighboring Vertices
 - Newell's Algorithm
- 4 Assignment

Definition (Mesh)

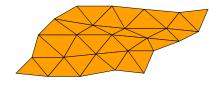
A mesh is an array of polygons, usually triangles or quadrilaterals, joined together to approximate a smooth surface.

- We store the vertices of the mesh in a two-dimensional array.
- We render the mesh as a GL_QUAD_STRIP (deprecated) or a GL_TRIANGLE_STRIP.

- For lighting effects, each vertex of the mesh must have a normal vector.
- Depending on the circumstances, the normals are
 - Computed analytically from the equation of the surface, or
 - Approximated from the vertices themselves.
- Either way, they can be stored in a separate array or computed in real time.



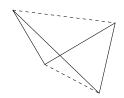
GL_QUAD_STRIP



GL_TRIANGLE_STRIP

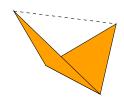
Quad vs. Triangle

- Which is better, quads or triangles?
- OpenGL will tessellate quads into triangles anyway.
- We have no control over which diagonal is used.
- Sometimes, OpenGL with jump back and forth between the two choices as the viewpoint changes.



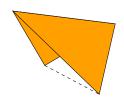
Quad vs. Triangle

- Which is better, quads or triangles?
- OpenGL will tessellate quads into triangles anyway.
- We have no control over which diagonal is used.
- Sometimes, OpenGL with jump back and forth between the two choices as the viewpoint changes.



Quad vs. Triangle

- Which is better, quads or triangles?
- OpenGL will tessellate quads into triangles anyway.
- We have no control over which diagonal is used.
- Sometimes, OpenGL with jump back and forth between the two choices as the viewpoint changes.



Outline

- Meshes
- 2 Cross Products
- Finding Surface Normals
 - Using Neighboring Vertices
 - Newell's Algorithm
- 4 Assignment

• To find normal vectors, we need the cross product.

Definition (Cross Product)

The cross product of vectors $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ is defined to be the vector

$$\mathbf{u} \times \mathbf{v} = (u_2v_3 - u_3v_2, u_3v_1 - u_1v_3, u_1v_2 - u_2v_1).$$

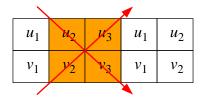
Note that the cross product of vectors is a vector, not a scalar.

u_1	u_2	u_3	
v_1	v_2	v_3	

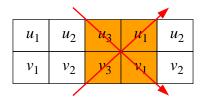
An easy way to remember the cross product.

u_1	u_2	u_3	u_1	u_2
v_1	v_2	v_3	v_1	v_2

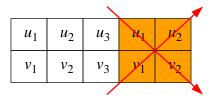
Duplicate the first and second columns.



Find this 2×2 determinant for the first component.



Find the next 2×2 determinant for the second component.



Find the last 2×2 determinant for the third component.

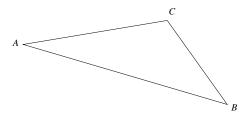
Algebraic Properties of the Cross Product

• Let \mathbf{u} , \mathbf{v} , and \mathbf{w} be vectors and let c be a real number and let θ be the angle between \mathbf{u} and \mathbf{v} .

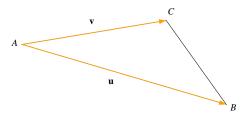
$$\mathbf{u} \times \mathbf{v} = -(\mathbf{v} \times \mathbf{u})$$
 $(c\mathbf{u}) \times \mathbf{v} = \mathbf{u} \times (c\mathbf{v}) = c(\mathbf{u} \times \mathbf{v})$
 $\mathbf{v} \times \mathbf{v} = \mathbf{0}$
 $(\mathbf{u} \times \mathbf{v}) \cdot \mathbf{u} = (\mathbf{u} \times \mathbf{v}) \cdot \mathbf{v} = \mathbf{0}$
 $|\mathbf{u} \times \mathbf{v}| = |\mathbf{u}||\mathbf{v}|\sin\theta$

The Right-hand Rule

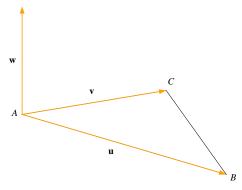
- The right-hand rule helps us remember which way $\mathbf{u} \times \mathbf{v}$ points.
- Arrange the thumb, index finger, and middle finger so that they are mutually orthogonal.
- Let the thumb represent u and the index finger represent v.
- Then the middle finger represents u × v.



Given a triangle ABC, find a unit normal to the surface.



Form the vectors $\mathbf{u} = B - A$ and $\mathbf{v} = C - A$.



Compute $\mathbf{w} = \mathbf{u} \times \mathbf{v}$.

Example

Example (Cross Products)

Let

$$A = (1, 1, 2)$$

 $B = (3, 1, 5)$
 $C = (1, 0, 4)$

Then

$$\mathbf{u} = B - A = (2, 0, 3)$$

 $\mathbf{v} = C - A = (0, -1, 2)$

• So $\mathbf{w} = \mathbf{u} \times \mathbf{v} = (3, -4, -2).$

Outline

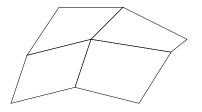
- Meshes
- Cross Products
- Finding Surface Normals
 - Using Neighboring Vertices
 - Newell's Algorithm
- 4 Assignment

Outline

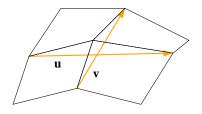
- Meshes
- Cross Products
- Finding Surface Normals
 - Using Neighboring Vertices
 - Newell's Algorithm
- 4 Assignment

- If we have an analytical description of the surface (i.e., a mathematical function), then we can use calculus to compute the normal vectors.
- We will do that later.
- On the other hand, if we have only data points, then we must approximate the normal at a vertex by using nearby vertices.

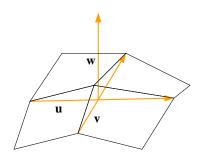
- Assuming a rectangular mesh, a simple method to approximate a normal vector is to
 - Let u be the vector from the next vertex on the left to the next vertex on the right.
 - Let v be the vector from the next vertex below to the next vertex above.
 - Compute the normal vector as $\mathbf{u} \times \mathbf{v}$.



Begin with a vertex in the mesh.



Find the neighboring vectors \mathbf{u} and \mathbf{v} .

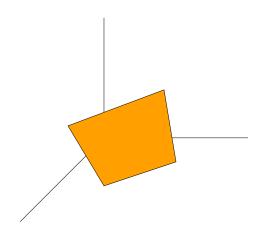


Compute their cross product ${\bf w}.$

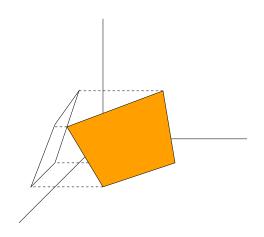
Outline

- Meshes
- Cross Products
- Finding Surface Normals
 - Using Neighboring Vertices
 - Newell's Algorithm
- 4 Assignment

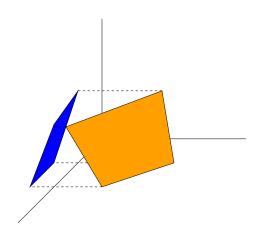
- Newell's algorithm is somewhat more sophisticated.
- Given a polygon in space,
 - Project it onto the three coordinate planes: yz, xz, and xy.
 - Compute the areas of the projections: A_{yz} , A_{xz} , and A_{xy} .
 - Form the normal vector $\mathbf{n} = (A_{yz}, A_{xz}, A_{xy})$.
- The idea is that the more the facet is tilted towards a plane, the greater the area of its projection onto that plane.



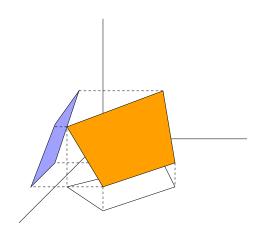
Begin with a quadrilateral in space.



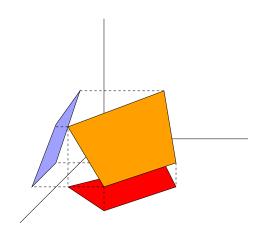
Project it onto the yz-plane.



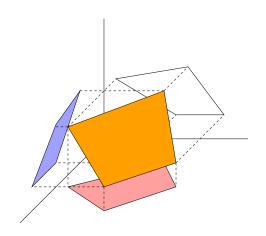
Find the area of the projection.



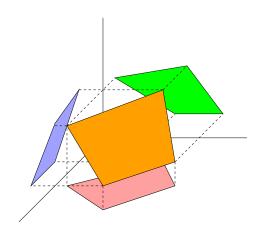
Project it onto the xz-plane.



Find the area of the projection.



Project it onto the xy-plane.



Find the area of the projection.

Theorem

If the vertices of a polygon are

$$(x_0, y_0), (x_1, y_1), (x_2, y_2), \dots, (x_{n-1}, y_{n-1}),$$

then the area of the polygon is

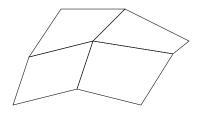
$$A = \frac{1}{2} \left[(x_0 y_1 - x_1 y_0) + (x_1 y_2 - x_2 y_1) + \cdots + (x_{n-1} y_0 - x_0 y_{n-1}) \right].$$

Applying Newell's Algorithm gives

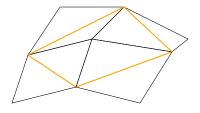
$$A_{yz} = \frac{1}{2} [(y_0 z_1 - y_1 z_0) + (y_1 z_2 - y_2 z_1) + \dots + (y_{n-1} z_0 - y_0 z_{n-1})]$$

$$A_{xz} = \frac{1}{2} [(z_0 x_1 - z_1 x_0) + (z_1 x_2 - z_2 x_1) + \dots + (z_{n-1} x_0 - z_0 x_{n-1})]$$

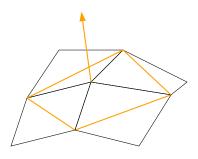
$$A_{xy} = \frac{1}{2} [(x_0 y_1 - x_1 y_0) + (x_1 y_2 - x_2 y_1) + \dots + (x_{n-1} y_0 - x_0 y_{n-1})]$$



Begin with a vertex in the mesh.

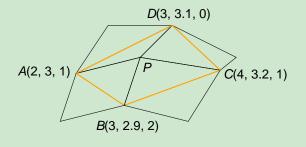


Form the quadrilateral from its neighboring vertices.



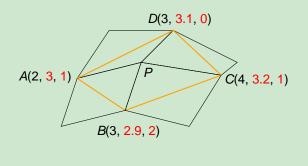
Apply Newell's Algorithm.

Example (Newell's Algorithm)

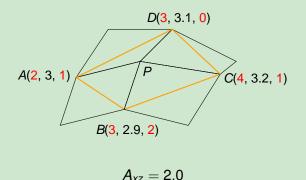


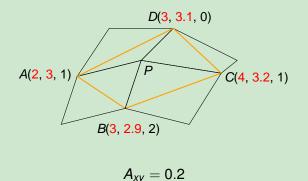
Find a normal at P.

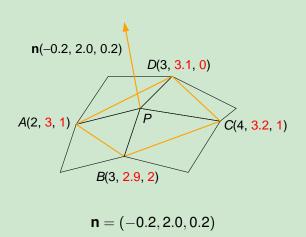
Example (Newell's Algorithm)



 $A_{yz} = -0.2$







Example (Newell's Algorithm)

• What does the simpler method produce, where we let u go from the left neighbor to the right neighbor and let v go from the lower neighbor to the upper neighbor?

- What does the simpler method produce, where we let u go from the left neighbor to the right neighbor and let v go from the lower neighbor to the upper neighbor?
- $\mathbf{u} = (4, 3.2, 1) (2, 3, 1) = (2, 0.2, 0).$

- What does the simpler method produce, where we let u go from the left neighbor to the right neighbor and let v go from the lower neighbor to the upper neighbor?
- $\mathbf{u} = (4, 3.2, 1) (2, 3, 1) = (2, 0.2, 0).$
- $\mathbf{v} = (3, 3.1, 0) (3, 2.9, 2) = (0, 0.2, -2).$

- What does the simpler method produce, where we let u go from the left neighbor to the right neighbor and let v go from the lower neighbor to the upper neighbor?
- $\mathbf{u} = (4, 3.2, 1) (2, 3, 1) = (2, 0.2, 0).$
- $\mathbf{v} = (3, 3.1, 0) (3, 2.9, 2) = (0, 0.2, -2).$
- $\mathbf{u} \times \mathbf{v} = (-0.4, 4, 0.4).$

Outline

- Meshes
- Cross Products
- Finding Surface Normals
 - Using Neighboring Vertices
 - Newell's Algorithm
- 4 Assignment

Homework

Homework

- Read Subsection 3.1.9 cross products.
- Read Section 4.9 meshes.