The Model Matrix

Lecture 7

Robb T. Koether

Hampden-Sydney College

Mon, Sep 4, 2017
The Model Coordinate System

The Model Matrix
- Translations
- Rotations
- Scalings

Sequences of Transformations

Other Rotations and Scalings

Assignment
Outline

1 The Model Coordinate System
 - Translations
 - Rotations
 - Scalings

2 The Model Matrix
 - Translations
 - Rotations
 - Scalings

3 Sequences of Transformations

4 Other Rotations and Scalings

5 Assignment
The Model Coordinate System

- When we create an object, such as a square or a circle, we use the coordinate system and position that are most convenient.
 - To create a square, we might place the lower-left corner at \((0, 0)\) and let the side be 1.
 - To create a circle, we would place the center at \((0, 0)\) and let the radius be 1.

- That coordinate system is called the **model coordinate system** and it is specific to each object.
For example, suppose that we want to draw four squares as shown.
Should we construct 4 separate squares in four separate buffers?
Should we construct 4 separate squares in four separate buffers?
Or should we construct one square and draw it 4 times, in 4 different locations?
The Model Coordinate System

- Should we construct 4 separate squares in four separate buffers?
- Or should we construct one square and draw it 4 times, in 4 different locations?
- How do we change the location (in world coordinates) of an object?
1. The Model Coordinate System
2. The Model Matrix
 - Translations
 - Rotations
 - Scalings
3. Sequences of Transformations
4. Other Rotations and Scalings
5. Assignment

Robb T. Koether (Hampden-Sydney College) The Model Matrix
The model matrix is a matrix that represents a geometric transformation that will move or modify (i.e., transform) an object from its model coordinates to world coordinates. The model matrix consists of any combination of
- Translations – slide in a given direction.
- Rotations – rotate about a given axis.
- Scalings – stretch or shrink by a given factor.
- Or any other transformation that can be represented by a matrix.
The model matrix, like the projection matrix, must be passed to the vertex shader. The vertex shader will apply it, along with the projection matrix, to the vertex.
The Vertex Shader

```glsl
#version 450 core

uniform mat4 model;
uniform mat4 proj;

out vec4 color;

layout (location = 0) in vec2 vPosition;
layout (location = 1) in vec3 vColor;

void main()
{
    gl_Position = proj*model*vec4(vPosition, 0.0f, 1.0f);
    color = vec4(vColor, 1.0f);
}
```
Outline

1. The Model Coordinate System

2. The Model Matrix
 - Translations
 - Rotations
 - Scalings

3. Sequences of Transformations

4. Other Rotations and Scalings

5. Assignment
Matrices provide a convenient way to apply transformations to objects in 3D computer graphics. Common transformations include translation, rotation, and scaling. In the next few pages, we will discuss the translation matrix and how to use it.

Translations

```cpp
mat4 translate(float dx, float dy, float dz);
```

- The `translate()` function will return a translation matrix.
- The x, y, and z coordinates will be shifted by the amounts dx, dy, and dz, respectively.
- See `vmath.h` for details.
Translations

\[
T = \begin{pmatrix}
1 & 0 & 0 & dx \\
0 & 1 & 0 & dy \\
0 & 0 & 1 & dz \\
0 & 0 & 0 & 1
\end{pmatrix}.
\]
Outline

1. The Model Coordinate System
2. The Model Matrix
 - Translations
 - Rotations
 - Scalings
3. Sequences of Transformations
4. Other Rotations and Scalings
5. Assignment
Rotations

The \texttt{rotate()} function will return a rotation matrix.

The object will be rotated through the given angle and about an axis through the origin and the given point \((ax, ay, az)\).

The direction of rotation is determined by the \textit{right-hand rule}: point your right thumb in the direction from the origin to the point and curl your fingers.

See \texttt{vmath.h} for details.
Rotations About the z-Axis

$$R_z = \begin{pmatrix} \cos \theta & -\sin \theta & 0 & 0 \\ \sin \theta & \cos \theta & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$
1. The Model Coordinate System

2. The Model Matrix
 - Translations
 - Rotations
 - Scalings

3. Sequences of Transformations

4. Other Rotations and Scalings

5. Assignment
Scalings

```c
mat4 scale(float sx, float sy, float sz);
```

- The `scale()` function will return a scaling matrix.
- The object will be stretched or shrunk by factors `sx`, `sy`, and `sz` in the `x`, `y`, and `z` directions, respectively.
- If one of the values is -1 and the other two are 1, then the scaling will be a reflection.
- None of `sx`, `sy`, and `sz` should ever be 0.
- See `vmath.h` for details.
Scalings

\[
\mathbf{s} = \begin{pmatrix}
 sx & 0 & 0 & 0 \\
 0 & sy & 0 & 0 \\
 0 & 0 & sz & 0 \\
 0 & 0 & 0 & 1
\end{pmatrix}.
\]
1. The Model Coordinate System

2. The Model Matrix
 - Translations
 - Rotations
 - Scalings

3. Sequences of Transformations

4. Other Rotations and Scalings

5. Assignment
Sequences of Transformations

- In most cases, an object will go through a sequence of transformations.
- All sequences of transformations can be consolidated down to:
 - A scaling, followed by
 - A rotation, followed by
 - A translation.
- This is the most intuitive sequence.
Sequences of Transformations

- A translation followed by a rotation can be rewritten as a rotation followed by a translation.
- A translation followed by a scaling can be rewritten as a scaling followed by a translation.
- A rotation followed by a scaling can be rewritten as a scaling followed by a rotation.
Sequences of Transformations

Furthermore, the product of two translations is again a translation.
The product of two rotations is again a rotation.
The product of two scalings is again a scaling.
Thus, any sequence can be rewritten as one scaling, then one rotation, then one translation.
1 The Model Coordinate System

2 The Model Matrix
 - Translations
 - Rotations
 - Scalings

3 Sequences of Transformations

4 Other Rotations and Scalings

5 Assignment
What if we want to rotate about a point \((x_0, y_0)\) that is not the origin?

We can translate \((x_0, y_0)\) to the origin, rotate, then translate the origin back to \((x_0, y_0)\).
model = translate(-x_0, -y_0, 0.0f) * model;
model = rotate(angle, 0.0f, 0.0f, 1.0f) * model;
model = translate(x_0, y_0, 0.0f) * model;

model = translate(x_0, y_0, 0.0f)
 * rotate(angle, 0.0f, 0.0f, 1.0f)
 * translate(-x_0, -y_0, 0.0f) * model;
Other Scalings

- What if we want to scale about a fixed point \((x_0, y_0)\) that is not the origin?
- We can translate \((x_0, y_0)\) to the origin, scale, then translate the origin back to \((x_0, y_0)\).
Other Scalings

\[
\text{model} = \text{translate}(-x_0, -y_0, 0.0f) \times \text{model}; \\
\text{model} = \text{scale}(s_x, s_y, s_z) \times \text{model}; \\
\text{model} = \text{translate}(x_0, y_0, 0.0f) \times \text{model};
\]

Other Scalings

\[
\text{model} = \text{translate}(x_0, y_0, 0.0f) \\
\quad \times \text{scale}(s_x, s_y, s_z) \\
\quad \times \text{translate}(-x_0, -y_0, 0.0f) \times \text{model};
\]
1 The Model Coordinate System

2 The Model Matrix
 • Translations
 • Rotations
 • Scalings

3 Sequences of Transformations

4 Other Rotations and Scalings

5 Assignment
Assignment

- Assignment 6.
- Read pp. 207 - 210, Homogeneous Coordinates.
- Read pp. 210 - 217, Linear Transformations and Matrices.