Closure Properties of Decidable and Recognizable Languages

Lecture 28
Problems 3.15 and 3.16

Robb T. Koether
Hampden-Sydney College
Fri, Oct 31, 2008
Exercise 3.6, page 160.

In Theorem 3.21 we showed that a language is Turing-recognizable iff some enumerator enumerates it. Why didn’t we use the following simpler algorithm for the forward direction of the proof? As before, s_1, s_2, \ldots is a list of all strings in Σ^*.

$E = “$Ignore the input.$”$

1. Repeat the following for $i = 1, 2, 3, \ldots$

2. Run M on s_i.

3. If it accepts, print out $s_i.”$
Exercise 3.7, page 160.

Explain why the following is not a description of a legitimate Turing machine.

\(M_{\text{bad}} = \text{“The input is a polynomial } p \text{ over variables } x_1, \ldots, x_n. \)

1. Try all possible settings of \(x_1, \ldots, x_n \) to integer values.
2. Evaluate \(p \) on all of these settings.
3. If any of these settings evaluates to 0, accept; otherwise, reject.”
Theorem (Closure Properties of Decidable Languages)

The class of decidable languages is closed under

- Union
- Intersection
- Complementation
- Concatenation
- Star
Closure Under Intersection

Theorem

If L_1 and L_2 are decidable, then $L_1 \cap L_2$ is decidable.
Proof.

- Let D_1 be a decider for L_1 and let D_2 be a decider for L_2.
- Then build a decider D for $L_1 \cap L_2$ as in the following diagram.
Theorem

If L_1 and L_2 are decidable, then $L_1 \cup L_2$ is decidable.
Proof.

Let D_1 be a decider for L_1 and let D_2 be a decider for L_2.

Then build a decider D for $L_1 \cup L_2$ as in the following diagram.

![Diagram](image-url)
Closure Under Other Operators

- How would we show that if L_1 and L_2 are decidable, then so are
 - $L_1 L_2$
 - $\overline{L_1}$
 - L_1^*
Theorem (Closure Properties of Recognizable Languages)

The class of recognizable languages is closed under

- Union
- Intersection
- Concatenation
- Star
Closure Under Intersection

Theorem

If L_1 and L_2 are recognizable, then $L_1 \cap L_2$ is recognizable.
Closure Under Intersection

Proof.

- Let R_1 be a recognizer for L_1 and let R_2 be a recognizer for L_2.
- Then build a recognizer R for $L_1 \cap L_2$ as in the following diagram.

```
R
```

```
\begin{center}
\begin{tikzpicture}
\node (R1) at (0,0) {$R_1$};
\node (R2) at (1,0) {$R_2$};
\node (R) at (0.5,0) {$R$};
\node (w) at (-1,0) {$w$};
\draw[->] (w) -- (R1) node[midway, above] {yes};
\draw[->] (R1) -- (R2) node[midway, above] {yes};
\draw[->] (R2) -- (R) node[midway, above] {yes};
\end{tikzpicture}
\end{center}
```
Closure Under Union

Theorem

If L_1 and L_2 are recognizable, then $L_1 \cup L_2$ is recognizable.
Proof.

- Let R_1 be a recognizer for L_1 and let R_2 be a recognizer for L_2.
- Then build a recognizer R for $L_1 \cup L_2$ as in the following diagram.
Closure of Union

Proof.

- In that diagram, we must be careful to alternate execution between R_1 and R_2.
Closure Under Other Operators

- How would we show that if L_1 and L_2 are recognizable, then so are
 - $L_1 L_2$
 - L_1^*
- Why is $\overline{L_1}$ not necessarily recognizable?
Homework

- Read Section 3.2, pages 152 - 154.
- Problems 15, 16, page 161.