A Turing-Unrecognizable Language

Robb T. Koether
Hampden-Sydney College

Mon, Nov 10, 2008
Outline

1. Homework Review

2. A_{TM} is Undecidable
 - The Turing Machine H
 - The Turing Machine D

3. A Turing-Unrecognizable Language

4. Assignment
Exercise 4.24, page 184.

Let

\[\text{PAL}_{\text{DFA}} = \{ \langle M \rangle \mid M \text{ is a DFA that accepts some palindrome} \} \].

Show that \(\text{PAL}_{\text{DFA}} \) is decidable. (Hint: Theorems about CFLs are helpful here.)
Theorem

A_{TM} is undecidable.
Proof.

- Suppose that A_{TM} is decidable.
- Then there is a Turing machine H that decides A_{TM}.
- Thus, when H reads $\langle M, w \rangle$, it will
 - Halt in its accept state if M accepts w.
 - Halt in its reject state if M does not accept w (rejects w or loops).
The Turing Machine H

Proof.

H

M accepts w

yes

M does not accept w

no

$\langle M, w \rangle$
A_{TM} is Undecidable

Proof.

- We will use H as a module in a new Turing machine D.
- D will read a description $\langle M \rangle$ of a Turing machine M.
- Then D will run H on input $\langle M, \langle M \rangle \rangle$.
A_{TM} is Undecidable

Proof.

- If H determines that M accepts on $\langle M \rangle$, then D will reject $\langle M \rangle$.
- If H determines that M rejects on $\langle M \rangle$, then D will reject $\langle M \rangle$.
- That is, D accepts $\langle M \rangle$ if and only if M rejects $\langle M \rangle$.
The Turing Machine D

Proof.

\[\langle M \rangle \quad \langle M, \langle M \rangle \rangle \quad H \]

- **yes**
- **no**

\[D \]

The Turing Machine D is Undecidable.
Proof.

- Now, run D on $\langle D \rangle$.
- What happens?
The Turing Machine D

Proof.

A Turing-Unrecognizable Language

Assignment

\[D \]

\[\langle D \rangle \]

\[\langle D, \langle D \rangle \rangle \]

\[H \]

yes

no

yes

no

\[D, \langle D \rangle \]
\(A_{TM} \) is Undecidable

Proof.

- According to the description of \(D \), \(D \) accepts \(\langle D \rangle \) if and only if \(D \) rejects \(\langle D \rangle \).
- This is a contradiction.
- Therefore, \(A_{TM} \) is undecidable.
The Halting Problem - Undecidability

Robb T. Koether

Homework Review

A Turing-Unrecognizable Language

Theorem

The language $\overline{A_{TM}}$ is Turing-unrecognizable.

Lemma

A language L is decidable if and only if L and \overline{L} are Turing-recognizable.
Proof of the lemma (\Rightarrow).

- If L is decidable, then there is a Turing machine M_1 that decides it.
- Then obviously M_1 recognizes L.
- To create a machine M_2 that recognizes \overline{L}, simply swap the accept and reject states of M_1.
Proof of the lemma (\iff).

- Suppose L and \overline{L} are Turing-recognizable.
- Then there is a Turing machine M_1 that recognizes L and a Turing machine M_2 that recognizes \overline{L}.
- We will build a Turing machine D that decides L.
Proof of the lemma (\iff).

- Given an input string w,
 - D will run M_1 on w for 1 step.
 - Then D will run M_2 on w for 1 step.
 - Then D will run M_1 on w for 2 steps.
 - Then D will run M_2 on w for 2 steps.
 - And so on.

- Since either $w \in L$ or $w \in \overline{L}$, eventually one of the machines will halt in its accept state.
A Turing-Unrecognizable Language

Proof of the lemma (\iff).

- When either one halts, D halts.
- If M_1 halts in its accept state, then D accepts w.
- If M_2 halts in its accept state, then D rejects w.
- Thus, D decides L.
A Turing-Unrecognizable Language

Proof of the theorem.

- Suppose $\overline{A_{TM}}$ were Turing-recognizable.
- We already know that A_{TM} is Turing-recognizable.
- It would follow from the lemma that A_{TM} is decidable, which it is not.
- Therefore, $\overline{A_{TM}}$ is not Turing-recognizable.
This means that it is impossible to write a computer program that can read the code of any computer program and an input and decide whether that program will halt on that input.
Homework Review
A_{TM} is Undecidable
The Turing Machine H
The Turing Machine D
A Turing-Unrecognizable Language
Assignment

Homework

- Read Section 4.2, pages 179 - 182.