Mapping Reducibility
Lecture 35
Section 5.3

Robb T. Koether
Hampden-Sydney College
Mon, Nov 19, 2012
1. Reducibility

2. Mapping Reducibility

3. The Unrecognizability of E_{TM} and E_{TM}

4. Assignment
Outline

1 Reducibility

2 Mapping Reducibility

3 The Unrecognizability of EQ_{TM} and \overline{EQ}_{TM}

4 Assignment
We have been “reducing” one problem to another.

Then we claimed that if the reduced problem was decidable, then so was the original problem.

But how do we know that a Turing machine can carry out the reduction?

If a Turing machine cannot perform the reduction, then the original problem may not really be decidable.
Definition (Computable function)

A function $f : \Sigma^* \rightarrow \Sigma^*$ is **computable** if there exists a Turing machine M such that on every input w, M halts with $f(w)$, and only $f(w)$, on its tape.
Examples of Computable Functions

Example (Computable functions)

- The following functions are computable.
 - $incr(n) = n + 1$.
 - $decr(n) = \begin{cases} n - 1, & n > 0; \\ 0, & n = 0. \end{cases}$
 - $add(m, n) = m + n$.
 - $sub(m, n) = \begin{cases} m - n, & m \geq n; \\ 0, & m < n. \end{cases}$
 - $mult(m, n) = mn$.
 - $sqrt(n) = \lfloor \sqrt{n} \rfloor$.
Outline

1. Reducibility
2. Mapping Reducibility
3. The Unrecognizability of EQ_{TM} and EQ'_{TM}
4. Assignment
A language A is mapping reducible (or just reducible) to a language B if there exists a computable function $f : \Sigma^* \rightarrow \Sigma^*$ such that for every $w \in \Sigma^*$,

$$w \in A \iff f(w) \in B.$$

f is called a reduction of A to B.

This is denoted $A \leq_m B$.

Robb T. Koether (Hampden-Sydney College)
Definition

Note that a “yes” answer to the reduced problem (Is $f(w) \in B$?) must correspond to a “yes” answer to the original problem (Is $w \in A$?), and “no” must correspond to “no”.
Example (Reduction)

- Let $\Sigma^* = \{0, 1, \#\}$.
- Let GREATER be the language of binary representations of pairs of integers (n_1, n_2), where $n_1 > n_2$.
- Let POSITIVE be the language of binary representations of positive integers.
- The Turing machine SUBTRACT is a reduction of GREATER to POSITIVE.
- Thus, GREATER \leq_m POSITIVE.
Example of a Reduction

Example (Reduction)

- Let LESS be the language of binary representations of pairs of integers \((n_1, n_2)\), where \(n_1 < n_2\).
- Would SUBTRACT be a reduction of LESS to POSITIVE?
- Is there a way to reduce LESS to GREATER (which reduces to POSITIVE)?
Decidability and Reducibility

Theorem

If B is decidable and $A \leq_m B$, then A is decidable.

Proof.

- Let D_B be a decider for B.
- Let f be a reduction of A to B.
- Then build a decider D_A for A as follows.
Decidability and Reducibility

\[D_A \xrightarrow{\langle w \rangle} f \xrightarrow{\langle f(w) \rangle} D_B \]

\[\text{yes} \quad \text{yes} \quad \text{no} \quad \text{no} \]

\[f(w) \]

Robb T. Koether (Hampden-Sydney College)
We showed that $A_{TM} \leq_m E_{TM}$ by building the following Turing machines.

$$M_w \quad x = w \quad \langle M, w \rangle \quad U \quad x \neq w \quad \langle M, w \rangle \quad \text{acc} \quad \text{acc} \quad \text{rej} \quad \text{rej}$$

$$D_A \quad \langle M, w \rangle \quad \text{CONVERT} \quad \langle M_w \rangle \quad D_E \quad \text{yes} \quad \text{no} \quad \text{yes} \quad \text{no}$$
Notice that we needed to reverse the “accept” and “reject” outputs.

That is, if $f : \Sigma^* \rightarrow \Sigma^*$ by $f : \langle M, w \rangle \mapsto \langle M_w \rangle$, then

$$\langle M, w \rangle \in A_{TM} \iff f (\langle M, w \rangle) \notin E_{TM}.$$

In other words, we reduced A_{TM} to $\overline{E_{TM}}$, not E_{TM}.
It is ok to build this reversal into the design of a decider. But it is important to note that we did not reduce A_{TM} to E_{TM}. If we know that

$$w \in A \iff f(w) \in B.$$

we cannot assume that there is a function g such that

$$w \in A \iff g(w) \notin B.$$

just because it would be convenient.
Theorem

If \(A \leq_m B \), then

- \(B \) is decidable \(\Rightarrow \) \(A \) is decidable.
- \(A \) is undecidable \(\Rightarrow \) \(B \) is undecidable.
- \(B \) is recognizable \(\Rightarrow \) \(A \) is recognizable.
- \(A \) is unrecognizable \(\Rightarrow \) \(B \) is unrecognizable.
1 Reducibility

2 Mapping Reducibility

3 The Unrecognizability of EQ_{TM} and EQ_{TM}

4 Assignment
The Unrecognizability of EQ_{TM} and \overline{EQ}_{TM}

Theorem

EQ_{TM} and \overline{EQ}_{TM} are both unrecognizable.
The Unrecognizability of EQ_{TM} and \overline{EQ}_{TM}

Proof.

- Suppose that EQ_{TM} is recognizable.
- Let R_{EQ} be a recognizer of EQ_{TM}.
- We will build a recognizer for \overline{A}_{TM}.
Proof.

- Given M and w, build the following two machines M_\emptyset and $M_{\langle M, w \rangle}$.
The Unrecognizability of EQ_{TM} and $\overline{\mathit{EQ}}_{TM}$

Proof.

- What is the language of M_{\varnothing}?
- What is the language of $M_{\langle M, w \rangle}$?
Proof.

- Now build the Turing machine M':

```
\[
\begin{align*}
&M', \langle M, w \rangle \\
&M' \quad \langle M_\varnothing, M_{\langle M, w \rangle} \rangle \\
&\quad \quad R_{EQ} \quad \text{acc} \quad \text{acc}
\end{align*}
\]
```
The Unrecognizability of EQ_{TM} and \overline{EQ}_{TM}

Proof.

M rejects $w \iff M_\emptyset$ and $M_{\langle M, w \rangle}$ are equivalent.

$\iff R_{EQ}$ accepts $\langle M_\emptyset, M_{\langle M, w \rangle} \rangle$.

$\iff M'$ accepts $M_{\langle M, w \rangle}$.

Thus, M' recognizes $\overline{A_{TM}}$, a contradiction.
To show that $\overline{EQ_{TM}}$ is also unrecognizable, replace M_{\emptyset} with this machine and repeat the argument.
Irreducibility of A_{TM} to E_{TM}

Theorem

A_{TM} is not mapping reducible to E_{TM}.

Lemma

If $A \leq_m B$, then $\overline{A} \leq_m \overline{B}$.
Irreducibility of A_{TM} to E_{TM}

Proof of the lemma.

- The statement
 \[w \in A \iff f(w) \in B \]
 is equivalent to the statement
 \[w \notin A \iff f(w) \notin B \]
 which is equivalent to
 \[w \in \overline{A} \iff f(w) \in \overline{B}. \]
Irreducibility of A_{TM} to E_{TM}

Proof of the theorem.

- Suppose that A_{TM} is mapping reducible to E_{TM}.
- Then $\overline{A_{TM}} \leq_m \overline{E_{TM}}$.
- But we know that $\overline{E_{TM}}$ is recognizable and that $\overline{A_{TM}}$ is not recognizable. (How?)
- This is a contradiction. (Why?)
- Therefore, A_{TM} is not mapping reducible to E_{TM}.
Assignment

- Read Section 5.3, pages 234 - 238.
- Exercises 4, 6, page 239.
- Problems 22, 23, 24, 25, page 239.