Outline

1. The Regular Operations
2. Closure Properties
3. Assignment
Outline

1. The Regular Operations
2. Closure Properties
3. Assignment
The Regular Operations

Definition (Union of languages)
The union of languages \(A \) and \(B \) is the language

\[
A \cup B = \{ w \mid w \in A \text{ or } w \in B \}.
\]

Definition (Concatenation of languages)
The concatenation of languages \(A \) and \(B \) is the language

\[
A \circ B = \{ uv \mid u \in A \text{ and } v \in B \}.
\]

Definition (Kleene star of a language)
The Kleene star of a language \(A \) is the language

\[
A^* = \{ w_1 w_2 \ldots w_k \mid w_i \in A \text{ and } k \geq 0 \}.
\]
The Regular Operations

- We often abbreviate $A \circ B$ as AB.
- Then we may abbreviate AA as A^2, AAA as A^3, and so on.
- The Kleene star of A can be written as

$$A^* = \{\varepsilon\} \cup A \cup A^2 \cup A^3 \cup \cdots.$$
Examples

Example (Regular operations)

- Let \(A = \{ w \mid w \text{ contains an even number of } a\text{’s} \} \).
- Let \(B = \{ w \mid w \text{ contains an even number of } b\text{’s} \} \).
- Describe the languages
 - \(A \cup B \)
 - \(A \circ B \)
 - \(A^* \)
 - \((A \cup B)^* \)
 - \((A \circ B)^* \)
 - \((A^*)^* \)
Example (Regular operations)

Design finite automata that accept

- $A \cup B$
- $A \circ B$
- A^*
- $(A \cup B)^*$
- $(A \circ B)^*$
- $(A^*)^*$
Example (Regular operations)

A DFA for $A \cup B$.

![DFA Diagram]

- States A and B are represented by circles.
- Transitions are labeled with 'a' and 'b'.
- The DFA accepts strings that are in A or B or both.
Examples

- Design a DFA for $A \cap B$.
Example (Regular operations)

A DFA for $A \circ B$.

\begin{center}
\begin{tikzpicture}
 \node[state, initial] (q0) at (0,0) {a, b};
 \node[state] (q1) at (2,0) {a};
 \node[state] (q2) at (2,2) {b};
 \node[state] (q3) at (0,2) {a};
 \node[state] (q4) at (0,4) {a};

 \draw[->] (q0) edge (q1)
 (q1) edge (q2)
 (q2) edge (q3)
 (q3) edge (q0)
 (q1) edge (q2)
 (q2) edge (q3);
\end{tikzpicture}
\end{center}
Outline

1. The Regular Operations
2. Closure Properties
3. Assignment
Theorem (Closure of Regular Languages)

The class of regular languages is closed under the operations of union, concatenation, and star.
Proof.

Proof (union)

Let $M_1 = \{Q_1, \Sigma_1, \delta_1, q_1, F_1\}$ be a DFA whose language is L_1.
Let $M_2 = \{Q_2, \Sigma_2, \delta_2, q_2, F_2\}$ be a DFA whose language is L_2.
We will define a DFA M whose language is $L_1 \cup L_2$.
Let $M = \{Q, \Sigma, \delta, q_0, F\}$ where
- $Q = Q_1 \times Q_2$.
- $\Sigma = \Sigma_1 \cup \Sigma_2$.
- $q_0 = (q_1, q_2)$.
- $F = \{(p_1, p_2) \mid p_1 \in F_1 \text{ or } p_2 \in F_2\}$.
Proof.

Proof (union)

- Define $\delta : Q \times \Sigma \rightarrow Q$ by
 $$\delta((p_1, p_2), a) = (\delta_1(p_1, a), \delta_2(p_2, a)).$$

- It is clear that the language of M is $L_1 \cup L_2$.
Proof.

Proof (concatenation, star)
- What machine will accept $L_1 \circ L_2$?
- What machine will accept L_1^*?
Example (Concatenation Example)

- Let
 \[L_1 = \{ w \in \Sigma^* \mid w \text{ has an even number of a's} \} \]
 and
 \[L_2 = \{ w \in \Sigma^* \mid w \text{ has an even number of b's} \} \]
- How would a DFA for \(L_1 L_2 \) process the strings \textbf{ababb} and \textbf{ababbbb}?
Other Operations

Definition (Intersection)
The intersection of languages A and B is the language

$$A \cap B = \{ w \mid w \in A \text{ and } w \in B \}.$$

Definition (Complement)
The complement of language A is the language

$$\overline{A} = \{ w \in \Sigma^* \mid w \notin A \}.$$
Theorem (Closure of Regular Languages)

The class of regular languages is closed under the operations of intersection and complementation.
Proof.

Proof (intersection, complement)

- What machine will accept $L_1 \cap L_2$?
- What machine will accept \overline{L}_1?
1. The Regular Operations
2. Closure Properties
3. Assignment
Design a DFA for the language \((A \circ B)^*\), where

\[
A = \{ w \mid w \text{ contains an odd number of } a\text{'s} \} \\
B = \{ w \mid w \text{ contains an odd number of } b\text{'s} \}
\]