1. Assignment

2. Decidable Languages

3. Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4. Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
Outline

1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
Assignment

- Chapter 4: Exercises 1, 2, 3, 4, 9, 10, 11, 12, 13.
1. Assignment

2. Decidable Languages

3. Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4. Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
Decidable Languages

We have seen that

\[\{ \langle G \rangle \mid G \text{ has an Euler circuit} \} \]

is a decidable language.

That is, we can create a Turing machine that will read \(\langle G \rangle \) and give a yes or no answer every time.
In a similar way, any decision problem P can be represented as a language:

$$L_P = \{ \langle I \rangle \mid I \text{ is an instance of problem } P \text{ for which the answer is yes} \}.$$

Other possible inputs represent either instances of P for which the answer is no or improperly formatted input (garbage).

Either way, all other inputs are rejected by a Turing machine that decides the problem.
Outline

1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
Definition (The Acceptance Problem for DFAs)

Given a DFA M and a string w, does M accept w?

The language is

$$A_{\text{DFA}} = \{ \langle M, w \rangle \mid \text{DFA } M \text{ accepts string } w \}.$$
The Acceptance Problem for DFAs

- To decide the problem, we build a Turing machine M' that simulates M on input w.
- Then we run M' on input $\langle M, w \rangle$.
- After a finite number of steps, M' halts in either an accept state or a reject state.
- If M' halts in an accept state, then M accepts w.
- If M' halts in a reject state, then M rejects w.
The Acceptance Problem for DFAs

Theorem

A_{DFA} is decidable.
Outline

1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
The Acceptance Problem for NFAs

Definition (The Acceptance Problem for NFAs)
Given an NFA M and a string w, does M accept w?

The language is

$$A_{\text{NFA}} = \{ \langle M, w \rangle \mid \text{NFA } M \text{ accepts string } w \}.$$
The Acceptance Problem for NFAs

- The strategy is to convert NFA M to a DFA D and then run the previous algorithm on $\langle D, w \rangle$.
- This is an example of a reduction of one problem to another problem (from A_{NFA} to A_{DFA}).
The Acceptance Problem for NFAs

Theorem

A_{NFA} is decidable.
1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
The Emptiness Problem for DFAs

Definition (The Emptiness Problem for DFAs)

Given a DFA M, is the language of M empty. That is, does M reject every word in Σ^*?

The language is

$$E_{DFA} = \{ \langle M \rangle \mid L(M) = \emptyset \}.$$
The strategy is to do a breadth-first search of the state diagram for an accept state, starting from the start state.
The Emptiness Problem for DFAs

- If the start state is an accept state, then reject $\langle M \rangle$.
- If not, then mark the start state as inspected.
- Then inspect every state that is reachable in one transition from the start state and is not marked.
- If any is an accept state, then reject $\langle M \rangle$.
- If not, then mark them as inspected.
- Continue in the same manner with the states that are reachable from those states in one transition and that have not been marked.
This procedure will eventually terminate when it can reach only states that are already marked.

If no marked state is an accept state, then accept $\langle M \rangle$.

The Emptiness Problem for DFAs
The Emptiness Problem for DFAs

Theorem

E_{DFA} is decidable.
1. Assignment

2. Decidable Languages

3. Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4. Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
The Equivalence Problem for DFAs

Definition (The Equivalence Problem for DFAs)
Given two DFAs A and B, do they have the same language? That is, does $L(A) = L(B)$?

- The language is

$$EQ_{DFA} = \{ \langle A, B \rangle \mid L(A) = L(B) \}.$$
The strategy is to follow the algorithm to build the DFA M whose language is
\[
\left(L(A) \cap \overline{L(B)} \right) \cup \left(\overline{L(A)} \cap L(B) \right).
\]
The Equivalence Problem for DFAs

- Then solve the Emptiness Problem for M.
- If $L(M) = \emptyset$, then $L(A) = L(B)$.
- If $L(M) \neq \emptyset$, then $L(A) \neq L(B)$.
- This is a second example of a reduction (from EQ_{DFA} to E_{DFA}).
The Equivalence Problem for DFAs

Theorem

EQ_{DFA} is decidable.
Outline

1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
The Derivation Problem for CFGs

Definition

Given a CFG G and a word w, can w be derived from G? That is, is $w \in L(G)$?

The language is

$$D_{CFG} = \{ \langle G, w \rangle \mid w \in L(G) \}.$$
The strategy is first to convert the grammar G to an equivalent grammar G' in Chomsky Normal Form.

If the string w has length n, then it is in $L(G)$ if and only if it can be derived from G' in exactly $2n - 1$ steps from G.

In fact, the first $n - 1$ steps must use rules of the form $A \rightarrow BC$ and the last n steps must use rules of the form $A \rightarrow a$.
The Turing machine systematically tests every possible such derivation.

There are only a finitely many such derivations, so the process must terminate.

If w is derived, then accept $\langle G, w \rangle$.

If w is not derived, then reject $\langle G, w \rangle$.
The Derivation Problem for CFGs

Theorem

D_{CFG} is decidable.
1 Assignment

2 Decidable Languages

3 Decidable Problems Concerning DFAs and NFAs
 - The Acceptance Problem for DFAs
 - The Acceptance Problem for NFAs
 - The Emptiness Problem for DFAs
 - The Equivalence Problem for DFAs

4 Decidable Problems Concerning CFGs and PDAs
 - The Derivation Problem for CFGs
 - The Acceptance Problem for PDAs
The Acceptance Problem for PDAs

Definition

Given a PDA M and a string w, does M accept w?

The language is

$$A_{\text{PDA}} = \{ \langle M, w \rangle \mid \text{PDA } M \text{ accepts string } w \}.$$
The strategy is to apply the algorithm that converts a PDA M to an equivalent context-free grammar G.

Then solve the Derivation Problem for $\langle G, w \rangle$.

This is a third example of a reduction (from A_{PDA} to D_{CFG}).
The Acceptance Problem for PDAs

Theorem

A_{PDA} is decidable.