Outline

1. Assignment
2. The Regular Operations
3. Closure Properties
Outline

1. Assignment
2. The Regular Operations
3. Closure Properties
Assignment

Homework

- Read Section 1.1, pages 44 - 47.
- Exercises 4, 5, 6, pages 83 - 84.
- Problem 34, page 89.
- Design a DFA for the language \((A \circ B)^*\), where

\[
A = \{ w \mid w \text{ contains an odd number of a's} \}
\]

\[
B = \{ w \mid w \text{ contains an odd number of b's} \}
\]
1. Assignment
2. The Regular Operations
3. Closure Properties
The Regular Operations

Definition (Union of languages)
The union of languages A and B is the language

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}.$$

Definition (Concatenation of languages)
The concatenation of languages A and B is the language

$$A \circ B = \{ uv \mid u \in A \text{ and } v \in B \}.$$

Definition (Kleene star of a language)
The Kleene star of a language A is the language

$$A^* = \{ w_1 w_2 \ldots w_k \mid w_i \in A \text{ and } k \geq 0 \}.$$
We often abbreviate $A \circ B$ as AB.
Then we may abbreviate AA as A^2, AAA as A^3, and so on.
The Kleene star of A can be written as

$$A^* = \{\varepsilon\} \cup A \cup A^2 \cup A^3 \cup \cdots.$$
Example (Regular operations)

Let

\[A = \{ w \mid w \text{ contains exactly one } a \text{ and any number of } b \text{’s} \} \]
\[B = \{ w \mid w \text{ contains exactly one } b \text{ and any number of } a \text{’s} \} . \]

Describe the languages

- \(A \cup B \)
- \(A \circ B \)
- \(A^* \)
- \((A \cup B)^* \)
- \((A \circ B)^* \)
- \(A^* \circ B^* \)
Example (Regular operations)

- Let

 \[A = \{ w \mid w \text{ contains exactly one } a \text{ and any number of } b's \} \]

 \[B = \{ w \mid w \text{ contains exactly one } b \text{ and any number of } a's \}. \]

- Design a DFA for \(A \cup B \).
- Design a DFA for \(A \circ B \).
- Design a DFA for \(A^* \).
Outline

1. Assignment
2. The Regular Operations
3. Closure Properties
Theorem (Closure of Regular Languages)

The class of regular languages is closed under the operations of union, concatenation, and star.
Proof.

Proof (union)

Let $M_1 = \{Q_1, \Sigma_1, \delta_1, q_1, F_1\}$ be a DFA whose language is L_1.
Let $M_2 = \{Q_2, \Sigma_2, \delta_2, q_2, F_2\}$ be a DFA whose language is L_2.
We will define a DFA M whose language is $L_1 \cup L_2$.
Let $M = \{Q, \Sigma, \delta, q_0, F\}$ where
- $Q = Q_1 \times Q_2$.
- $\Sigma = \Sigma_1 \cup \Sigma_2$.
- $q_0 = (q_1, q_2)$.
- $F = \{(p_1, p_2) \mid p_1 \in F_1 \text{ or } p_2 \in F_2\}$.
Proof.

Proof (union)

- Define $\delta : Q \times \Sigma \rightarrow Q$ by

 $$\delta((p_1, p_2), a) = (\delta_1(p_1, a), \delta_2(p_2, a)).$$

- It is clear that the language of M is $L_1 \cup L_2$.

Robb T. Koether (Hampden-Sydney College) Finite Automata - Regular Operations Fri, Sep 5, 2014 13 / 19
Closure

Proof.

Proof (concatenation, star)

- What machine will accept $L_1 \circ L_2$?
- What machine will accept L_1^*?
Example (Concatenation Example)

Let

\[L_1 = \{ w \in \Sigma^* \mid w \text{ has an even number of } a's \} \]

and

\[L_2 = \{ w \in \Sigma^* \mid w \text{ has an even number of } b's \} \]

How would a DFA for \(L_1 L_2 \) process the strings \texttt{ababb} and \texttt{ababbb}?
Definition (Intersection)

The intersection of languages A and B is the language

$$A \cap B = \{ w \mid w \in A \text{ and } w \in B \}.$$

Definition (Complement)

The complement of language A is the language

$$\overline{A} = \{ w \in \Sigma^* \mid w \notin A \}.$$
Examples

Let

\[A = \{ w \mid w \text{ contains exactly one } a \text{ and any number of } b\text{'s} \} \]
\[B = \{ w \mid w \text{ contains exactly one } b \text{ and any number of } a\text{'s} \}. \]

Design a DFA for \(A^* \cap B^* \).
Theorem (Closure of Regular Languages)

The class of regular languages is closed under the operations of intersection and complementation.
Proof.

Proof (intersection, complement)

- What machine will accept $L_1 \cap L_2$?
- What machine will accept $\overline{L_1}$?