
Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Introduction to Compiler Design
Lecture 1
Chapter 1

Robb T. Koether

Hampden-Sydney College

Wed, Jan 14, 2009

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Outline

1 The Stages of Compilation
Lexical Analysis
Syntactic Analysis
Semantic Analysis
Intermediate Code Generation
Optimization
Machine Code Generation

2 Assignment

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

The Stages of Compilation

The stages of compilation
Lexical analysis
Syntactic analysis.
Semantic analysis.
Intermediate code generation.
Optimization.
Machine code generation.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Lexical Analysis

Definition (Token)
A token is a smallest meaningful group symbols.

Definition (Lexical analyzer)
A lexical analyzer, also called a lexer or a scanner, receives
a stream of characters from the source program and groups
them into tokens.

Source
Program

Lexical
Analyzer

Stream
of

Tokens

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Tokens

Each token has a type and a value.
For example,

The variable count has type id and value “count”.
The number 123 has type num and value “123”.
The keyword int has type int and value “int”.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Example

Example (Lexical Analysis)
What are the tokens in the following program?

int main()
{

int a = 123;
return 0;

}

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Example

Example (Lexical Analysis)
The statement

position = initial + rate * 60;

would be viewed as

id1 = id2 + id3 ∗ num ;

or
id1 assign id2 plus id3 times num semi

by the lexer.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Lexical Analysis Tools

There are tools available to assist in the writing of
lexical analyzers.

lex - produces C source code (UNIX).
flex - produces C source code (gnu).
JLex - produces Java source code.

We will use JLex.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Syntactic Analysis

Definition (Syntax analyzer)
A syntax analyzer, also called a parser, receives a stream of
tokens from the lexer and groups them into phrases that
match specified grammatical patterns.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Syntactic Analysis

Definition (Abstract syntax tree)
The output of the parser is an abstract syntax tree
representing the syntactical structure of the tokens.

Stream
of

Tokens

Syntax
Analyzer

Abstract
Syntax
Tree

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Grammatical Patterns

Grammatical patterns are described by a context-free
grammar.
For example, an assignment statement may be defined
as

stmt → id = expr ;
expr → expr + expr | expr ∗ expr | id | num

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Example

Example (Syntactic Analysis)
The form

id1 = id2 + id3 ∗ num ;

may be represented by the following tree.

=

*

+

id3

id2

num

id1

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Syntax Analysis Tools

There are tools available to assist in the writing of
parsers.

yacc - produces C source code (UNIX).
bison - produces C source code (gnu).
CUP - produces Java source code.

We will use CUP.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Semantic Analysis

Definition (Semantic analyzer)
A semantic analyzer traverses the abstract syntax tree,
checking that each node is appropriate for its context, i.e., it
checks for semantic errors. It outputs a refined abstract
syntax tree.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Example: Semantic Analysis

Example (Semantic Analysis)
The previous tree may be refined to

=

*

+

id3

id2

inttoreal

id1

num

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Intermediate Code Generation

Definition (Intermediate code)
Intermediate code is code that represents the semantics of
a program, but is machine-independent.

Definition (Intermediate code generator)
An intermediate code generator receives the abstract
syntax tree and it outputs intermediate code that
semantically corresponds to the abstract syntax tree.

Intermediate
Code

Generator

Intermediate
Code

Abstract
Syntax
Tree

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Intermediate Code

This stage marks the boundary between the front end
and the back end.
The front end is language-specific and
machine-independent.
The back end is machine-specific and
language-independent.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Intermediate Code

Intermediate
Code

C
Program

Java
Program

Pascal
Program

x86
Code

MIPS32
Code

Front End Back End

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Example

Example (Intermediate Code Generation)
The tree in our example may be expressed in
intermediate code as

temp1 = inttoreal(60)
temp2 = id3 * temp1
temp3 = id2 + temp2
id1 = temp3

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Code Optimizer

Definition (Optimizer)
An optimizer reviews the code, looking for ways to reduce
the number of operations and the memory requirements.

A program may be optimized for speed or for size.
Typically there is a trade-off between speed and size.

Optimizer Intermediate
Code

Intermediate
Code

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Example

Example (Optimization)
The intermediate code in this example may be
optimized as

temp1 = id3 * 60.0
id1 = id2 + temp1

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Machine Code Generation

The code generator receives the (optimized)
intermediate code.
It produces either

Machine code for a specific machine, or
Assembly code for a specific machine and assembler.

If it produces assembly code, then an assembler is
used to produce the machine code.

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Machine Code Generation

Code
Generator

Assembly
Code

Intermediate
Code

Assembler
Machine

Code

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Example: Machine Code Generation

The intermediate code may be translated into the
assembly code

movf id3,R2
mulf #60.0,R2
movf id2,R1
addf R2,R1
movf R1,id1

Introduction to
Compiler
Design

Robb T.
Koether

The Stages of
Compilation
Lexical Analysis

Syntactic Analysis

Semantic Analysis

Intermediate Code
Generation

Optimization

Machine Code
Generation

Assignment

Assignment

Homework
Read Chapter 1.
Install Cygwin on the lab machine of your choice.
Arrange with me to turn off Deep Freeze.

	The Stages of Compilation
	Lexical Analysis
	Syntactic Analysis
	Semantic Analysis
	Intermediate Code Generation
	Optimization
	Machine Code Generation

	Assignment

