### The x86 Instruction Set

Koetner

The x86
Instruction Se

### the AST

NUM Nodes ID Nodes DEREF Nodes PLUS Nodes ASSIGN Nodes

Accianment

# The x86 Instruction Set Lecture 16 Intel Manual, Vols. 2A & 2B

Robb T. Koether

Hampden-Sydney College

Mon, Mar 16, 2009

# Outline

The x86 Instruction Set

> Robb T. Koether

The x86 Instruction Se

Processi the AST

NUM Nodes ID Nodes DEREF Nodes PLUS Nodes ASSIGN Node

Assianme

- 1 The x86 Instruction Set
  - Push and Pop
- Processing the AST
  - NUM Nodes
  - ID Nodes
  - DEREF Nodes
  - PLUS Nodes
  - ASSIGN Nodes
  - TIMES Nodes
- Assignment

# The x86 Instruction Set

The x86 Instruction Set

> Robb I. Koethei

The x86 Instruction Set

Push and Pop

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Node

Assianmen

• There is an online summary of the x86 instruction set.

### The x86 Instruction Set

Koether

### The x86 Instruction Set

Processing the AST NUM Nodes ID Nodes DEREF Nodes PLUS Nodes ASSIGN Nodes TIMES Nodes

Assianmen'

- The runtime stack is a portion of memory that is used as a stack during program execution.
- The address of the top of the stack is stored in the register esp, called the stack pointer.
- The stack grows in a "downward" direction.
  - When values are pushed, esp is decremented.
  - When values are popped, esp is incremented.

### The x86 Instruction Set

The x86 Instruction Set

• esp points to the "top" of the stack.



The x86 Instruction Set

The x86 Instruction Set

• Push the value 100 and decrement esp.



The x86 Instruction Set

The x86 Instruction Set

• Push the value 200 and decrement esp again.



The x86 Instruction Set

Robb T. Koether

The x86 Instruction Set

Push and Pop

Processin

NUM Node

DEREF Node: PLUS Nodes

ASSIGN Nodes

. Assianment • Pop a value and increment esp.



The x86 Instruction Set

The x86 Instruction Set

• Pop another value and increment esp again.



# The Push and Pop Instructions

#### The x86 Instruction Set

### Push and Pop

### push and pop Instructions

```
push source
    destination
pop
```

- source is a register, a memory address, or an immediate value.
- destination is a register or a memory address.

# The Push and Pop Instructions

The x86 Instruction Set

> Robb 1 Koethe

The x86 Instruction Se Push and Pop

Processing the AST NUM Nodes ID Nodes DEREF Nodes PLUS Nodes ASSIGN Nodes

Accianmon

- The push instruction will decrement the stack pointer and then move *source* to the stack.
- The pop instruction will move the value on the stack to destination and then increment the stack pointer.

# Processing the Syntax Tree

### The x86 Instruction Set

Robb I Koethe

The x86 Instruction Se

# Processing the AST

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes
TIMES Nodes

Assianment

- The syntax tree is processed in a left-to-right post-order traversal.
- At each node
  - Process the left subtree.
  - Process the right subtree.
  - Process the node.

# Using the Stack

### The x86 Instruction Set

Koether

The x86
Instruction Se

# Processing the AST

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes
TIMES Nodes

Assianment

- As each node of the syntax tree is executed, it will leave its result on the run-time stack.
- The next node will pop that result off the stack (if it needs it) and then push its own result onto the stack (if there is one), and so on.

### The x86 Instruction Set

Robb T. Koether

The x86 Instruction Services Push and Pop

# Processing

the AST

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes
TIMES Nodes

Assignment

• The syntax tree for a = b + c - 5 is



### The x86 Instruction Set

Robb T. Koether

The x86
Instruction Se

Processing the AST

NUM Nodes ID Nodes DEREF Nodes PLUS Nodes

Accianment



- ID Push the address of a
- TD Push the address of h
- DEREF Pop the address of b, push the value of b.
- ID Push the address of c
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result.
- NUM Push 5.
- MINUS Pop two values, subtract them, push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

#### The x86 Instruction Set

Robb T. Koether

The x86
Instruction Se
Push and Pop

# Processing the AST

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Node



- ID Push the address of a.
- ID Push the address of b
- DEREF Pop the address of b, push the value of b.
- TD Push the address of c
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result
- NIIM Push 5
- MINUS Pop two values, subtract them push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

#### The x86 Instruction Set

Robb T. Koether

The x86
Instruction Se

# Processing the AST

ID Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- TD Push the address of c
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result
- NIIM Push 5
- MINUS Pop two values, subtract them, push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

### The x86 Instruction Set

Robb T Koethe

The x86
Instruction Se
Push and Pop

# Processing the AST

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- TD Push the address of c
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result
- NUM Push 5.
- MINUS Pop two values, subtract them push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

### The x86 Instruction Set

Robb T. Koether

The x86
Instruction Se

# Processing the AST

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- ID Push the address of c.
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result.
- NUM Push 5.
- MINUS Pop two values, subtract them push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

#### The x86 Instruction Set

Robb T Koethe

The x86
Instruction Se

# Processing the AST

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes

Accianment



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- ID Push the address of c.
- DEREF Pop the address of c, push the value of c.
  - PLUS Pop two values, add them, push the result.
- NUM Push 5.
- MINUS Pop two values, subtract them, push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

### The x86 Instruction Set

Robb T Koethe

The x86
Instruction Se

# Processing the AST

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes

Accianment



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- TD Push the address of c.
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result.
- NUM Push 5.
- MINUS Pop two values, subtract them, push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

#### The x86 Instruction Set

Robb T Koethe

The x86
Instruction Se

# Processing the AST

NUM Nodes ID Nodes DEREF Nodes PLUS Nodes ASSIGN Node

A a a i a la la a a a a



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- TD Push the address of c.
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result.
- NUM Push 5.
- MINUS Pop two values, subtract them, push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

### The x86 Instruction Set

Robb T Koethe

The x86
Instruction Se

# Processing the AST

NUM Nodes ID Nodes DEREF Nodes PLUS Nodes ASSIGN Node

Δeeianmant



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- ID Push the address of c.
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result.
- NUM Push 5.
- MINUS Pop two values, subtract them, push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

### The x86 Instruction Set

Robb T Koethe

The x86 Instruction Se

# Processing the AST

NUM Nodes ID Nodes DEREF Nodes PLUS Nodes ASSIGN Nodes

Δeeianmant



- ID Push the address of a.
- ID Push the address of b.
- DEREF Pop the address of b, push the value of b.
- TD Push the address of c.
- DEREF Pop the address of c, push the value of c.
- PLUS Pop two values, add them, push the result.
- NUM Push 5.
- MINUS Pop two values, subtract them, push the result.
- ASSIGN Pop the value and the address, store the value at the address, push the result.

# A NUM Node

The x86 Instruction Set

Koether

The x86 Instruction Se

the AST NUM Nodes

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes
TIMES Nodes

Assianment

### Example (A NUM Node)

push \$5

- A NUM node loads the integer whose value is stored in the node.
- For example, to load 5:
- The \$ sign means the "immediate" value 5.

# An ID Node

#### The x86 Instruction Set

Koether

The x86 Instruction Se Push and Pop

Processing
the AST
NUM Nodes

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes

Assianment

### Example (An ID Node)

lea a,%eax
push %eax

- A ID node pushes the address of the name that is stored in the node.
- For example, to push the address a:
- The instruction "push a" would not push the address of a; it would push the value at address of a, i.e., the value of a, which is not what we want.

# A DEREF Node

#### The x86 Instruction Set

Koether

The x86 Instruction Se Push and Pop

the AST
NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes

Assignme

### Example (The DEREF Node)

```
pop %eax
push (%eax)
```

- A DEREF node expects to find a memory address on top of the stack.
- It pushes the value stored at that address.
- The parentheses mean "the value at the address in the register."
- This is the indirect addressing mode.

### The add Instruction

The x86 Instruction Set

Koether

The x86
Instruction Se

Processing the AST

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes

Assianmen

### The add Instruction

add source, destination

- source is a register, a memory address, or an immediate value.
- destination is a register or a memory address.
- The value at source is added to the value at destination and the result is stored at destination

# A PLUS Node

### The x86 Instruction Set

Koether

The x86 Instruction Se

the AST

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes
TIMES Nodes

Assianment

# Example (A PLUS Node)

```
pop %edx
pop %eax
add %edx,%eax
push %eax
```

- A PLUS node expects to find two numbers on the stack.
- The right operand should be on top.
- It pops the values, adds them, and pushes the result.

# An ASSIGN Node

### The x86 Instruction Set

Koether

The x86
Instruction Se

Processin the AST

ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes

Assianment

### Example (An ASSIGN Node)

```
pop %eax
pop %edx
mov %eax, (%edx)
push %eax
```

- An ASSIGN node expects to find an address and a value on the stack.
- The value should be on top.
- It pops the value and the address, stores the value at the address, and pushes the value.

### The x86 Instruction Set

Koether

The x86
Instruction Se

the AST NUM Nodes ID Nodes DEREF Node PLUS Nodes

> TIMES Nodes Assignment

- The imul instruction performs multiplication of signed integers.
- There are three formats.
- For each format, the destination is edx:eax, which holds a 64-bit value.

The x86 Instruction Set

> Robb T. Koether

The x86 Instruction Se Push and Pop

the AST

ID Nodes DEREF Nodes PLUS Nodes

ASSIGN Node

Assignme

# The imul Instruction (Type 1)

imul source

- source is one operand.
- eax is the other operand.

The x86 Instruction Set

Koethei

The x86 Instruction Se Push and Pop

the AST

ID Nodes DEREF Nodes PLUS Nodes ASSIGN Nodes TIMES Nodes

Assianme

### The imul Instruction (Type 2)

imul register, source

- source is a register, a memory address, or an immediate value.
- register is the destination.

### The x86 Instruction Set

Koether

The x86 Instruction Se

# Processin the AST

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes
TIMES Nodes

Assignme

### The imul Instruction (Type 3)

imul register, source, immediate

- register is the destination.
- source is a register, a memory address, or an immediate value.
- immediate is a number.

# A TIMES Node

### The x86 Instruction Set

Koetner

The x86
Instruction Se
Push and Pop

the AST

ID Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes
TIMES Nodes

Assianmen

### Example (A TIMES Node)

```
pop %eax
pop %ecx
imul %ecx
push %eax
```

- A TIMES node expects to find two values on the stack.
- It pops them, multiplies them, and pushes the result.

# Assignment

The x86 Instruction Set

> Robb I Koethe

The x86
Instruction Se

# Processing the AST NUM Nodes

NUM Nodes
ID Nodes
DEREF Nodes
PLUS Nodes
ASSIGN Nodes

Assignment

### Homework

- Read the descriptions of the above operations in the Intel Manual, Vols. 2A and 2B.
- Also, look up and read about subtraction and division.