Regular Expressions to Automata

Lecture 5
Section 3.7

Robb T. Koether
Hampden-Sydney College

Fri, Jan 23, 2015
State Diagrams

An Example

Assignment
A regular expression consists of symbols a, b, c, \ldots; operators $|$, \ast, and concatenation; parentheses $()$; and ε.

We can also use the extended symbols $?$ and $+$.

We describe a recursive method of building a transition diagram (NFA) from a regular expression.
Building State Diagrams

The regular expression ε
The regular expression a
The regular expression $r \mid s$
The regular expression $r \mid s$
The regular expression \(rs \)
The regular expression rs
The regular expression r^*
The regular expression r^*
Building State Diagrams

- Applying these rules builds an NFA representing the regular expression.
- Note that each diagram has unique start and accepting states.
- This facilitates joining them together without any complications.
Example (Building a State Diagram)

- Build a state diagram from the regular expression

\[b^* (ab^*a)^* b^* \].
Create b
Form the Kleene closure b^*
Create two copies of a
Concatenate a, b^*, and a
Form the Kleene closure \((ab^*a)^*\)
Create two copies of b
Form the Kleene closures b^*
Concatenate b^*, $(ab^*a)^*$, and b^*
The regular expression $b^*(ab^*a)^*b^*$
The states relabeled
Building State Diagrams

The DFA
Relabel the states
Eliminate the unnecessary states \(\{1, 3\}, \{2, 5\} \)
Arrange in a simpler form
Outline

1. State Diagrams
2. An Example
3. Assignment
Assignment

- Read Section 3.7.
- p. 166: 3.