Annuities

Lecture 27

Robb T. Koether

Hampden-Sydney College

Mon, Nov 3, 2014

- Assignment
- 2 Annuities
- Building up an Annuity
- Drawing down an Annuity

Outline

- Assignment
- 2 Annuities
- Building up an Annuity
- 4 Drawing down an Annuity

Assignment

Collected

To be collected on Wednesday, November 5.

- Chapter 10: 52, 56.
- Inflation handout: #4, #6

Assignment

See handout.

Outline

- Assignment
- 2 Annuities
- Building up an Annuity
- 4 Drawing down an Annuity

Definitions

Definition (Annuity (Stolen from Investopedia))

An annuity is a financial product sold by financial institutions that is designed to accept and grow funds from an individual and then, upon annuitization, pay out a stream of payments to the individual at a later point in time.

- Typically, a retirement plan is an annuity You invest over your working life and then withdraw from it during retirement.
- One could establish an annuity to pay for a child's college education – You invest for 18 years and withdraw over the following 4 years.

Definitions

See a dramatization of an annuity.

title

- An annuity has two stages.
 - The investment stage.
 - The withdrawal stage.
- During the investment stage, the balance grows.
- During the withdrawal stage, the balance diminishes.

Outline

- Assignment
- 2 Annuities
- Building up an Annuity
- 4 Drawing down an Annuity

First Annuity Formula

• The formula for the future value while investing:

$$F=\frac{P((1+r)^n-1)}{r},$$

where F is the future value of the annuity, P is the amount investment per period, r is the interest rate per period, and n is the number of deposits (one per period).

Example (Three Deposits)

- Let the annual interest rate be 10%.
- Invest \$1000 each year for 3 years.

Example (Three Deposits)

The future value is

$$F = \frac{P((1+r)^n - 1)}{r}$$

Example (Three Deposits)

The future value is

$$F = \frac{P((1+r)^n - 1)}{r}$$
$$= \frac{1000((1.10)^3 - 1)}{.10}$$

Example (Three Deposits)

The future value is

$$F = \frac{P((1+r)^n - 1)}{r}$$
$$= \frac{1000((1.10)^3 - 1)}{.10}$$
$$= 3310.00.$$

Example (Three Deposits)

The investment stage:

Starting Balance	Interest	Total	Investment	Ending Balance
\$0	\$0	\$0	\$1000	\$1000

Example (Three Deposits)

The investment stage:

Starting Balance	Interest	Total	Investment	Ending Balance
\$0	\$0	\$0	\$1000	\$1000
\$1000	\$100	\$1100	\$1000	\$2100

Example (Three Deposits)

The investment stage:

Starting				Ending
Balance	Interest	Total	Investment	Balance
\$0	\$0	\$0	\$1000	\$1000
\$1000	\$100	\$1100	\$1000	\$2100
\$2100	\$210	\$2310	\$1000	\$3310

Outline

- Assignment
- 2 Annuities
- Building up an Annuity
- Drawing down an Annuity

Second Annuity Formula

• The formula for the amount to withdraw each period:

$$M=\frac{Ar}{1-(1+r)^{-n}},$$

where M is the amount withdrawn per period, A is the amount in the annuity when the withdrawals begin, r is the rate per period, and n is the number of withdrawals (one per period).

Example (Three Withdrawals)

- Continuing the example, the person has accumulated \$3310 after 3 years.
- How much can he withdraw each year for 3 years?

Example (Three Withdrawals)

The amount withdrawn is

$$M=\frac{Ar}{1-(1+r)^{-n}}$$

Example (Three Withdrawals)

The amount withdrawn is

$$M = \frac{Ar}{1 - (1+r)^{-n}}$$
$$= \frac{(3310)(.10)}{1 - (1.10)^3}$$

Example (Three Withdrawals)

The amount withdrawn is

$$M = \frac{Ar}{1 - (1+r)^{-n}}$$
$$= \frac{(3310)(.10)}{1 - (1.10)^3}$$
$$= 1331.00.$$

Example (Three Withdrawals)

The withdrawal stage:

Starting Balance	Interest	Total	Withdrawal	Ending Balance
\$3310	\$331	\$3641	\$1331	\$2310

Example (Three Withdrawals)

The withdrawal stage:

Starting				Ending
Balance	Interest	Total	Withdrawal	Balance
\$3310	\$331	\$3641	\$1331	\$2310
\$2310	\$231	\$2541	\$1331	\$1210

Example (Three Withdrawals)

The withdrawal stage:

Starting				Ending
Balance	Interest	Total	Withdrawal	Balance
\$3310	\$331	\$3641	\$1331	\$2310
\$2310	\$231	\$2541	\$1331	\$1210
\$1210	\$121	\$1331	\$1331	\$0

Another Example

Example

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 9% per year for 45 years.
- How much does he have at the end of 45 years?
- He retires and expects to live for 20 more years.
- How much can he withdraw each year for 20 years?

Another Example

Example

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 9% per year for 45 years.
- How much does he have at the end of 45 years?
- He retires and expects to live for 20 more years.
- How much can he withdraw each year for 20 years?
- What if the interest rate had been 15%?

Another Example

Example

- A person earning \$48,000 a year invests 5% of his income in a retirement account earning 9% per year for 45 years.
- How much does he have at the end of 45 years?
- He retires and expects to live for 20 more years.
- How much can he withdraw each year for 20 years?
- What if the interest rate had been 15%?
- What if the inflation rate were 3%?