Systematic Sampling

Lecture 9A
Section 2.7

Robb T. Koether

Hampden-Sydney College

Wed, Sep 10, 2008
Outline

1. Homework Review
2. 1-in-\(k \) Systematic Sampling
 - The Sample Size
3. The Language of Studies
4. Variables
5. Observational and Experimental Studies
6. Confounding Variables
7. Causation vs. Correlation
8. Assignment
Exercise 2.23, p. 116

- A class consists of 100 students. Suppose that we are interested in the heights of the people in the class. We could take a stratified random sample, using gender as the stratification variable.

- Suppose that it is known that 60 of the 100 students in the class are female.

- Someone shakes a box containing the 60 female tags, and with a blindfold on, reaches in and draws 10 tags.

- Then, this same person shakes a box containing the 40 male tags, and with a blindfold on, reaches in and draws 10 tags.
Exercise 2.23, p. 116

- Now we have two simple random samples, one for the males and one for the females, each of size 10.
- Suppose that the average height of the males in the sample is 70 inches, while the average height for the females in the sample is 63 inches.
- How should these two average heights be combined to produce an estimate of the average height of the people in the class?
Solution

- We should use a weighted average.
- Weight the female average with 0.60 and the male average with 0.40.
- The estimated average for the class is

\[
\text{est. avg.} = (0.60)(63) + (0.40)(70)
\]

\[
= 37.8 + 28
\]

\[
= 65.8
\]
Definition (1-in-\(k\) systematic sampling)

1-in-\(k\) systematic sampling is a sampling method in which one of the first \(k\) members of the population is selected at random. Then beginning with that member, every \(k^{th}\) member is selected.

For example, if \(k = 10\), then one of the first 10 members is selected at random. Suppose member #6 is selected. Then beginning with member #6, every 10\(^{th}\) member is selected, i.e., members 6, 16, 26, 36, and so on.
To select a 1-in-\(k \) systematic sample,

- Number the members of the population 1 through \(N \).
- Using \(\text{randInt}(1, k) \), choose a random starting point from 1 to \(k \). That represents the first member of the sample.
- From that starting point, put every \(k^{\text{th}} \) member in the sample.
Example

- Let’s choose a 1-in-5 systematic sample from the 22 students in this class.
- Use `randInt(1, 5)` to choose the first member.
- Then choose every 5th student thereafter.
In the last example, notice that \(\frac{22}{5} = 4.4 \).

So the sample size could end up being either 4 or 5, depending on the starting point.

- If the starting point is 3, then we get 4 members (3, 8, 13, 18).
- If the starting point is 2, then we get 5 members (2, 7, 12, 17, 22).
- Either way, each member has a \(\frac{1}{5} \) chance of being in the sample.
The Sample Size

Systematic Sampling

Robb T. Koether

Homework Review

1-in-

Systematic Sampling

The Sample Size

The Language of Studies

Variables

Observational and Experimental Studies

Confounding Variables

Causation vs. Correlation

Assignment

\[N = 22 \]
The Sample Size

$n = 4$

3 8 13 18

Homework Review
1-in-k
Systematic Sampling
The Sample Size
The Language of Studies
Variables
Observational and Experimental Studies
Confounding Variables
Causation vs. Correlation
Assignment
The Sample Size

$n = 5$

2 17 22 12 7

n = 5
To determine k,
- Divide the population size N by the desired sample size n.
- Let $k = \frac{N}{n}$ (rounded off).
Example

- Suppose we want to select \(n = 12 \) members from a population of size \(N = 187 \).
- Compute \(k = \frac{187}{12} \approx 16 \).
- Use \(\text{randInt}(1, 16) \) to get a random integer from 1 to 16. Say we get 9.
- Then beginning with member #9, select every 16\(^{th}\) member:
 9, 25, 41, 57, 73, 89, 105, 121, 137, 153, 169, and 185.
The Language of Studies

Lecture 9B
Sections 3.1 - 3.3

Robb T. Koether

Hampden-Sydney College

Wed, Sep 10, 2008
Two Types of Variable

Definition (Response variable)
A *response variable* is a variable whose value is influenced by other variables in the study.

Definition (Explanatory variable)
An *explanatory variable* is a variable whose value influences other variables in the study.
In a study, a standard drug and an experimental drug are administered to patients with fevers in order to reduce the fevers.

The explanatory variable is the drug which was administered to the patient.

The response variable is whether the patient’s fever was reduced.
Observational and Experimental Studies

Definition (Observational study)
An **observational study** is a study in which none of the explanatory variables are manipulated.

Definition (Experimental study)
An **experimental study** is a study in which at least one of the explanatory variables is manipulated.
If an experimental study gives the researchers more control over the explanatory variables, then why would anyone conduct an observational study?
Suppose researchers wish to determine whether there is a relationship between drunk driving and traffic fatalities.

Should this be an observational or an experimental study?

Why?
A traffic engineer is studying the traffic flow at a particular intersection. He needs to know the average number of cars that turn left, turn right, and go straight at various times of the day. Should this be an observational or an experimental study? Why?
Levels and Treatments

Definition (Level)

A **level** is a value of an explanatory variable.

Definition (Treatment)

A **treatment** is a combination of values (levels) of two or more explanatory variables.
A Third Type of Variable

Definition (Confounding variable)

A **confounding variable** is a variable whose effect on the response variables cannot be separated from the effect of the explanatory variables.

- If a study has one or more confounding variables, then the researchers cannot attribute changes in the response variables to any one explanatory variable.
Do “Explanatory” Variables Really Explain?

- A study cannot *prove* that variations in the explanatory variable really are the cause of variations in the response variable.
- The study can only give evidence supporting that belief.
- It may be the case that there is a third variable that is affecting both the explanatory and response variables.
- It may be conceivable that the “response" variable affected the “explanatory" variable!
In the following situation, could there be any confounding variables? What?
- The higher a student’s family income, the better his grades in school.

In the following situation, is it clear which is the explanatory variable and which is the response variable?
- The more someone drinks (alcohol), the more likely he is to get bad grades.
Evidence of Causation

- The following give evidence, but not proof, of causation.
 - The same association between the explanatory and response variables occurs in a variety of situations.
 - There is a plausible explanation of how the explanatory variable could affect the response variable.
 - There is no equally plausible third factor that could be affecting both the explanatory and the response variables.
The Language of Studies

Variables
Observational and Experimental Studies
Confounding Variables
Causation vs. Correlation
Assignment

1-in- \(k \) Systematic Sampling
The Sample Size

Assignment

Homework

- Let’s Do It! 2.9, 2.10, 3.1, 3.2, 3.3.
- Page 121, exercises 28, 30 - 32.
- Page 155, exercises 1 - 3, 5 - 8.