Test of Goodness of Fit
Robb T. Koether
Introduction
Chi-Square on the TI-83
Goodness-of- Fit Test on the
TI-83 Male vs.
Female Births Again
Summary

Test of Goodness of Fit Lecture 42 Section 14.3

Robb T. Koether

Hampden-Sydney College

Tue, Apr 8, 2008

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Outline

Test of Goodness of Fit

Robb T. Koether

Introduction

Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

2 Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Male vs. Female Births Again

Introduction

Test of Goodness of Fit

Robb T. Koether

Introduction

Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

- The TI-83 will compute χ^2 areas, but not χ^2 percentiles. (That's ok.)
- After performing the χ^2 test by hand, we will see how to do it on the TI-83.
- It turns out that there is no special function for a goodness-of-fit test.
- We will also see that the χ² test with one degree of freedom is equivalent to the single-proportion Z test.

(日) (日) (日) (日) (日) (日) (日)

TI-83 - Chi-Square Probabilities

Test of Goodness of Fit

Robb T. Koether

Introduction

Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

- To find a chi-square probability (*p*-value) on the TI-83,
 - Press DISTR.
 - Select χ^2 cdf.
 - Press ENTER.
 - Enter the lower endpoint, the upper endpoint, and the degrees of freedom.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Press ENTER.
- The probability appears.

Computing the *p*-value

Test of Goodness of Fit

Robb T. Koether

Introduction

Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

- In this example, df = 5.
- To find the *p*-value, use the TI-83 to calculate the probability that χ²₅ would be at least as large as 3.4.

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- p-value = χ^2 cdf (3.4, E99, 5) = 0.6386.
- Accept H_0 .
- We conclude that the die is fair.

Goodness-of-Fit Test on the TI-83

Test of Goodness of Fit

> Robb T. Koether

Introduction

Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

- Be careful! There is a function called χ^2 -Test, but it does not perform this test.
- Some TI-84s may have a GOF-Test.
- To perform a goodness-of-fit test on the TI-83, do the following.
 - Put the observed counts in list L_1 .
 - Put the hypothetical proportions in list L_1 .
 - Multiply L₁ by the sample size and store as L₁. These are the expected counts.
 - Calculate $(L_1-L_2)^2/L_2$.
 - Go to LIST > MATH and select sum (item #5).
 - Enter Ans and press ENTER. The value of χ^2 appears.
 - Then use χ^2 cdf to find the *p*-value.

- Test of Goodness of Fit
 - Robb T. Koether
- Introduction
- Chi-Square or the TI-83
- Goodness-of-Fit Test on the TI-83
- Male vs. Female Births Again
- Summary

- Suppose we observe 1000 births and find that 520 are male and 480 are female.
- Does this indicate that male births and female births are not equally likely?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- Let p_1 = proportion of male births.
- Let p_2 = proportion of female births.
- $H_0: p_1 = 0.50, p_2 = 0.50$
 - H_1 : H_0 is not true.
- *α* = 0.05.

Robb T. Koether

Introduction

Chi-Square or the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

• We have the table

	Male	Female
Observed	520	480
(Expected)	(500)	(500)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Test of Goodness of Fit

> Robb T. Koether

Introduction

Chi-Square or the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

The test statistic is

Calculate

$$\chi^{2} = \frac{(520 - 500)^{2}}{500} + \frac{(480 - 500)^{2}}{500}$$

= 0.8 + 0.8
= 1.6

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Test of Goodness of Fit

> Robb T. Koether

Introduction

Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

• The *p*-value is

$$p$$
-value = χ^2 cdf (1.6, E99, 1) = 0.2059.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Accept
$$H_0$$
.

• The proportion of male births is 50%.

- Test of Goodness of Fit
 - Robb T. Koether
- Introduction
- Chi-Square on the TI-83
- Goodness-of-Fit Test on the TI-83
- Male vs. Female Births Again

Summary

• Perform the above test as a two-tailed one-proportion *Z* test. That is, let the alternative hypothesis be

$$H_1: p_1 \neq p_2.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- What is the p-value?
- What is the value of the test statistic Z?
- Square that number. What do you get?

Summary

Test of Goodness of Fit

Robb T. Koether

Introduction

Chi-Square on the TI-83

Goodness-of-Fit Test on the TI-83

Male vs. Female Births Again

Summary

Summary

• The TI-83 will compute χ^2 areas, but not χ^2 percentiles. (That's ok.)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- The TI-83 will not perform the goodness-of-fit test, although we can do it using lists.
- The goodness-of-fit test with with only two cells is equivalent to the one-proportion *Z* test.