1. The Empirical Rule

2. The Standard Normal Distribution
 - Standard Normal Areas
 - TI-83 Standard Normal Areas

3. Areas under Other Normal Curves

4. Assignment
Outline

1. The Empirical Rule

2. The Standard Normal Distribution
 - Standard Normal Areas
 - TI-83 Standard Normal Areas

3. Areas under Other Normal Curves

4. Assignment
The Empirical Rule

For any symmetric unimodal distribution,

- Approximately 68% lie within one standard deviation of the mean.
- Approximately 95% lie within two standard deviations of the mean.
- Nearly all lie within three standard deviations of the mean.
The Empirical Rule

Example (Male Heights)

Suppose that the heights of U.S. adult males are normally distributed with a mean of 69.5 inches and a standard deviation of 2.9 inches.

Use the Empirical Rule to describe the male heights in more detail.

Approx. 68% of males are between 66.6 and 72.4 inches tall.

Nearly all males are between 60.8 and 78.2 inches tall.
The Empirical Rule

Example (Male Heights)

- Suppose that the heights of U.S. adult males are normally distributed with a mean of 69.5 inches and a standard deviation of 2.9 inches.
- Use the Empirical Rule to describe the male heights in more detail.
- Approx. 68% of males are between 66.6 and 72.4 inches tall.
The Empirical Rule

Example (Male Heights)

- Suppose that the heights of U.S. adult males are normally distributed with a mean of 69.5 inches and a standard deviation of 2.9 inches.
- Use the Empirical Rule to describe the male heights in more detail.
- Approx. 68% of males are between 66.6 and 72.4 inches tall.
- Approx. 95% of males are between 63.7 and 75.3 inches tall.
Example (Male Heights)

- Suppose that the heights of U.S. adult males are normally distributed with a mean of 69.5 inches and a standard deviation of 2.9 inches.
- Use the Empirical Rule to describe the male heights in more detail.
- Approx. 68% of males are between 66.6 and 72.4 inches tall.
- Approx. 95% of males are between 63.7 and 75.3 inches tall.
- Nearly all males are between 60.8 and 78.2 inches tall.
The Empirical Rule

Example (Male Heights)

The normal distribution of male heights

Robb T. Koether (Hampden-Sydney College)
1. The Empirical Rule

2. The Standard Normal Distribution
 - Standard Normal Areas
 - TI-83 Standard Normal Areas

3. Areas under Other Normal Curves

4. Assignment
The Standard Normal Distribution

Definition (Standard normal distribution)

The **standard normal distribution** is the normal distribution with mean 0 and standard deviation 1.

- It is denoted by the letter Z.
- That is, Z is $N(0, 1)$.

Robb T. Koether (Hampden-Sydney College)
The Standard Normal Distribution
Outline

1. The Empirical Rule

2. The Standard Normal Distribution
 - Standard Normal Areas
 - TI-83 Standard Normal Areas

3. Areas under Other Normal Curves

4. Assignment
Easy questions:
- What is the total area under the curve?
- What proportion of values of Z will fall below 0?
- What proportion of values of Z will fall above 0?
What proportion of values will fall below $+1$?
It turns out that the area to the left of $+1$ is 0.8413.
What is the area to the right of $+1$?
What is the area between -1 and 1?
What is the area between 0 and 1?
There are two methods to finding standard normal areas:

- The TI-83 function `normalcdf`.
- Standard normal table.

We will use the TI-83 (unless you want to use the table).
The Normal Distribution

1. The Empirical Rule
2. The Standard Normal Distribution
 - Standard Normal Areas
 - TI-83 Standard Normal Areas
3. Areas under Other Normal Curves
4. Assignment
Press 2nd DISTR.

Select normalcdf (Item #2).

Enter the lower and upper bounds of the interval.
- If the interval is infinite to the left, enter −E99 as the lower bound.
- If the interval is infinite to the right, enter E99 as the upper bound.

Press ENTER. The area appears in the display.
Practice

Use the TI-83 to find the following.
- The area between -1 and 1.
- The area to the right of 1.
- The area to the left of 1.645.

What “standard normal” percentile is 1.645?
Outline

1. The Empirical Rule
2. The Standard Normal Distribution
 - Standard Normal Areas
 - TI-83 Standard Normal Areas
3. Areas under Other Normal Curves
4. Assignment
If we are working with a different normal distribution, say $N(30, 5)$, then how can we find areas under the curve?

Use the same procedure as before, except enter the mean and standard deviation as the 3rd and 4th parameters of the `normalcdf` function.

For example, the area between 24 and 36 is given by `normalcdf(24,36,30,5)`.
Example (TI-83 Normal Areas)

- Find area between 25 and 38 in the distribution $N(30, 5)$.
- In the TI-83, enter `normalcdf(25, 38, 30, 5)`.
- Press ENTER. The answer 0.7865 appears.
Recall that male heights are $N(69.5, 2.9)$.

- What proportion of males are between 65 and 72 inches tall?
- What proportion of males are less than 66 inches tall?
- What proportion of males are at least 6 feet tall?
- If we choose one male at random from the population, what is the probability that he is between 66 and 68 inches tall?
- Suppose that to be an undercover agent, you have to be in the middle 70% in height. How short can you be and how tall can you be?
Male Heights

- Recall that male heights are $N(69.5, 2.9)$.
- What proportion of males are between 65 and 72 inches tall?
Recall that male heights are $N(69.5, 2.9)$.

- What proportion of males are between 65 and 72 inches tall?
- What proportion of males are less than 66 inches tall?
Male Heights

- Recall that male heights are $N(69.5, 2.9)$.
- What proportion of males are between 65 and 72 inches tall?
- What proportion of males are less than 66 inches tall?
- What proportion of males are at least 6 feet tall?

If we choose one male at random from the population, what is the probability that he is between 66 and 68 inches tall?

Suppose that to be an undercover agent, you have to be in the middle 70% in height. How short can you be and how tall can you be?
Male Heights

- Recall that male heights are $N(69.5, 2.9)$.
- What proportion of males are between 65 and 72 inches tall?
- What proportion of males are less than 66 inches tall?
- What proportion of males are at least 6 feet tall?
- If we choose one male at random from the population, what is the probability that he is between 66 and 68 inches tall?
Recall that male heights are $N(69.5, 2.9)$.

What proportion of males are between 65 and 72 inches tall?

What proportion of males are less than 66 inches tall?

What proportion of males are at least 6 feet tall?

If we choose one male at random from the population, what is the probability that he is between 66 and 68 inches tall?

Suppose that to be an undercover agent, you have to be in the middle 70% in height. How short can you be and how tall can you be?
1. The Empirical Rule

2. The Standard Normal Distribution
 - Standard Normal Areas
 - TI-83 Standard Normal Areas

3. Areas under Other Normal Curves

4. Assignment
Assignment

Homework

- Read Section 6.3.1, pages 364 - 370.
- Let’s Do It! 6.2, 6.3, 6.4, 6.5, 6.6
- Exercises 4 - 9, 11, 12, 15, 16, 18, page 376.