# Sampling Distribution of a Sample Proportion

Lecture 26 Section 8.4

Robb T. Koether

Hampden-Sydney College

Mon, Mar 5, 2012

#### **Outline**

- $lue{1}$  Computing the Sampling Distribution of  $\hat{p}$
- The Central Limit Theorem for Proportions
- Applications
- 4 Assignment

#### **Outline**

- 1 Computing the Sampling Distribution of  $\hat{p}$
- 2 The Central Limit Theorem for Proportions
- Applications
- Assignment

### Sampling Distributions

#### Definition (Sampling Distribution of a Statistic)

The sampling distribution of a statistic is the distribution of values of that statistic over all possible samples of a given size *n* from the population.

- We may sample with or without replacement.
- For our purposes, it will be simpler to sample with replacement.

### The Sample Proportion

- We will work out the sampling distribution for  $\hat{p}$  for sample sizes of 1, 2, and 3.
- Then I will show you the sampling distribution for  $\hat{p}$  for sample sizes of 4, 5, and 10.

- Suppose that 45% of all people approve of President Obama's performance.
- Suppose that we select one person at random.
- We may diagram the 2 possibilities.



- Now we take a sample of 2 people, sampling with replacement.
- Find the sampling distribution of  $\hat{p}$ .



- Let x be the number of people (out of 2) who strong disapprove of President Obama's performance.
- The probability distribution of  $\hat{p}$  is

| ĝ   | $P(\hat{p})$ |
|-----|--------------|
| 0   | 0.2025       |
| 1/2 | 0.4950       |
| 1   | 0.3025       |

- Now we take a sample of 3 people, sampling with replacement.
- Find the sampling distribution of  $\hat{p}$ .



- Let  $\hat{p}$  be the sample proportion of people who strong disapprove of President Obama's performance.
- The sampling distribution of  $\hat{p}$  is

| ĝ   | $P(\hat{p})$ |
|-----|--------------|
| 0   | 0.1664       |
| 1/3 | 0.4084       |
| 2/3 | 0.3341       |
| 1   | 0.0911       |

 If we sample 4 people, then the sampling distribution of the sample proportion is

| ĥ   | $P(\hat{p})$ |
|-----|--------------|
| 0   | 0.0915       |
| 1/4 | 0.2995       |
| 2/4 | 0.3675       |
| 3/4 | 0.2005       |
| 1   | 0.0410       |

 If we sample 5 people, then the sampling distribution of the sample proportion is

| ĥ   | $P(\hat{p})$ |
|-----|--------------|
| 0   | 0.0503       |
| 1/5 | 0.2059       |
| 2/5 | 0.3369       |
| 3/5 | 0.2757       |
| 4/5 | 0.1128       |
| 1   | 0.0185       |

 If we sample 6 people, then the sampling distribution of the sample proportion is

| ĥ   | $P(\hat{p})$ |
|-----|--------------|
| 0   | 0.0277       |
| 1/6 | 0.1359       |
| 2/6 | 0.2780       |
| 3/6 | 0.3032       |
| 4/6 | 0.1861       |
| 5/6 | 0.0609       |
| 1   | 0.0083       |

 If we sample 10 people, then the sampling distribution of the sample proportion is

| ĝ    | $P(\hat{p})$ |
|------|--------------|
| 0.00 | 0.0025       |
| 0.10 | 0.0207       |
| 0.20 | 0.0763       |
| 0.30 | 0.1665       |
| 0.40 | 0.2384       |
| 0.50 | 0.2340       |
| 0.60 | 0.1596       |
| 0.70 | 0.0746       |
| 0.80 | 0.0229       |
| 0.90 | 0.0042       |
| 1.00 | 0.0003       |

#### **Outline**

- Computing the Sampling Distribution of p̂
- The Central Limit Theorem for Proportions
- 3 Applications
- Assignment

### The Central Limit Theorem for Proportions

#### Theorem (The Central Limit Theorem for Proportions)

• For any population and any sample size, the sampling distribution of  $\hat{p}$  has the following mean and standard deviation:

$$\mu_{\hat{p}} = p$$
 $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}.$ 

 Furthermore, the sampling distribution of p̂ is approximately normal, provided n is large enough.

### The Central Limit Theorem for Proportions

#### The Sample Size

• n is large enough if

$$np \ge 5$$
 and  $n(1 - p) \ge 5$ .

• If *n* is small, then we have to work out the distribution by hand.

#### **Outline**

- 1 Computing the Sampling Distribution of  $\hat{p}$
- The Central Limit Theorem for Proportions
- 3 Applications
- Assignment

- Suppose that 60% of all high-school students own a cell phone.
- If we survey 3 high-school students, how likely is it that we will find that at least 2 of them own a cell phone?

- Suppose that 60% of all high-school students own a cell phone.
- If we survey 150 high-school students, how likely is it that we will find that at least 65% of them own a cell phone?

• If p=0.60 and our sample size is n=150, then  $\hat{p}$  is normal with mean  $\mu_{\hat{p}}=0.60$  and

$$\sigma_{\hat{p}} = \sqrt{\frac{(0.60)(0.40)}{150}} = \sqrt{0.0016} = 0.04.$$

• We want to know the probability that  $\hat{p} \ge 0.65$ .





• The probability that  $\hat{p}$  is greater than 0.65 is

normalcdf(.65, E99, .60, .04) = 0.1056.

- What if our sample size were 600 instead of 150?
- Then  $\hat{p}$  is normal with mean  $\mu_{\hat{p}} = 0.60$  and

$$\sigma_{\hat{p}} = \sqrt{\frac{(0.60)(0.40)}{600}} = \sqrt{0.0004} = 0.02.$$





• The probability that  $\hat{p}$  is greater than 0.65 is

normalcdf(.65, E99, .60, .02) = 0.0062.

#### Example (Guessing on a Test)

 A student takes a math placement test with 25 multiple-choice questions.

- A student takes a math placement test with 25 multiple-choice questions.
- Each question has 5 choices.

- A student takes a math placement test with 25 multiple-choice questions.
- Each question has 5 choices.
- If a student guesses at each answer, what will his score most likely be?

- A student takes a math placement test with 25 multiple-choice questions.
- Each question has 5 choices.
- If a student guesses at each answer, what will his score most likely be?
- If a student scores 10 out of 25, can we be sure that he did not guess at all 25 answers?

- If he guesses at all 25 answers, then the probability of getting any one answer correct is p = 0.20.
- The proportion that he actually gets correct is  $\hat{p}$ .

- If he guesses at all 25 answers, then the probability of getting any one answer correct is p = 0.20.
- The proportion that he actually gets correct is  $\hat{p}$ .
- The distribution of  $\hat{p}$  is normal with mean 0.20 and standard deviation  $\sqrt{\frac{(0.20)(0.80)}{25}} = 0.04$ .

- If he guesses at all 25 answers, then the probability of getting any one answer correct is p = 0.20.
- The proportion that he actually gets correct is  $\hat{p}$ .
- The distribution of  $\hat{p}$  is normal with mean 0.20 and standard deviation  $\sqrt{\frac{(0.20)(0.80)}{25}} = 0.04$ .
- If we allow three standard deviations each way, then  $\hat{p}$  is almost certainly at least 0.08 and at most 0.32.

- If he guesses at all 25 answers, then the probability of getting any one answer correct is p = 0.20.
- The proportion that he actually gets correct is  $\hat{p}$ .
- The distribution of  $\hat{p}$  is normal with mean 0.20 and standard deviation  $\sqrt{\frac{(0.20)(0.80)}{25}} = 0.04$ .
- If we allow three standard deviations each way, then  $\hat{p}$  is almost certainly at least 0.08 and at most 0.32.
- That represents from 2 to 8 correct answers.

#### **Outline**

- 1 Computing the Sampling Distribution of  $\hat{p}$
- 2 The Central Limit Theorem for Proportions
- Applications
- 4 Assignment

### **Assignment**

#### Homework

- Read Sections 8.1 8.2, pages 499 508.
- Exercises 7 14, page 526.