The Goodness-of-Fit Test

Lecture 49 Section 14.3

Robb T. Koether

Hampden-Sydney College

Tue, Apr 24, 2012

Robb T. Koether (Hampden-Sydney College)

The Goodness-of-Fit Test

Tue, Apr 24, 2012 1 / 15

э

DQC

э

- 2 The Effect of Sample Size
- 3 Goodness-of-Fit Example

Assignment

- Be careful when using the TI-83!
- There is a function called χ^2 -Test, but it does *not* perform the goodness-of-fit test.
- Some TI-84s have a GOF-Test function.
- The GOF-Test function does perform the goodness-of-fit test.

TI-83 Goodness-of-fit test

- Put the observed counts in list L₁.
- Put the hypothetical proportions in list L₂.
- Multiply L₂ by the sample size and store as L₂. These are the expected counts.
- Calculate $(L_1-L_2)^2/L_2$ (either all at once or step by step).
- Go to LIST > MATH and select sum (item #5).
- Enter Ans and press ENTER. The value of χ^2 appears.
- Then use $\chi^2 \text{cdf}$ to find the *p*-value.

э

∃ ► < ∃ ►</p>

2 The Effect of Sample Size

3 Goodness-of-Fit Example

Assignment

Robb T. Koether (Hampden-Sydney College)

• In the previous example, 3's and 5's were overrepresented and 1's were underrepresented.

Sac

∃ ► 4 Ξ

- In the previous example, 3's and 5's were overrepresented and 1's were underrepresented.
- Yet that was not significant.

∃ ► 4 Ξ

- In the previous example, 3's and 5's were overrepresented and 1's were underrepresented.
- Yet that was not significant.
- What if we observed the same proportions, but for a larger sample?

- In the previous example, 3's and 5's were overrepresented and 1's were underrepresented.
- Yet that was not significant.
- What if we observed the same proportions, but for a larger sample?
- That is, what if we had observed

Number	1	2	3	4	5	6
Observed	90	150	190	140	180	150
(Expected)	(150)	(150)	(150)	(150)	(150)	(150)

- In the previous example, 3's and 5's were overrepresented and 1's were underrepresented.
- Yet that was not significant.
- What if we observed the same proportions, but for a larger sample?
- That is, what if we had observed

Number	1	2	3	4	5	6
Observed	90	150	190	140	180	150
(Expected)	(150)	(150)	(150)	(150)	(150)	(150)

• Would it be signficant?

3 Goodness-of-Fit Example

Assignment

Robb T. Koether (Hampden-Sydney College)

- Suppose we toss a coin 1000 times and get 525 heads and 475 tails.
- Does this indicate that is fair or that it is biased?

- (1) Let p_1 = proportion of heads. Let p_2 = proportion of tails. $H_0: p_1 = 0.50, p_2 = 0.50$ $H_1: H_0$ is not true.
- (2) $\alpha = 0.05$.
- (3) The test statistic is

$$\chi^2 = \sum_{\text{all cells}} \frac{(O-E)^2}{E}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

(4) We have the table

	Heads	Tails	
Observed	525	475	
(Expected)	(500)	(500)	

Calculate

Robb T. Koether (Hampden-Sydney College)

《曰》《聞》《臣》《臣》 [] 臣.

(5) The *p*-value is

$$p$$
-value = χ^2 cdf (2.5, E99, 1) = 0.1138

(6) Accept H_0 .

(7) The proportion of heads is 50%.

э

- Perform the above test as a two-tailed one-proportion z test.
- That is, let the alternative hypothesis be

 $H_1: p_1 \neq p_2.$

- What is the *p*-value?
- What is the value of the test statistic z?
- Square that number. What do you get?

モトィモト

- 2 The Effect of Sample Size
- 3 Goodness-of-Fit Example

Homework

- Read Sections 14.1 14.3, pages 921 935.
- Let's Do It! 14.2, 14.3.
- Exercises 6 11, 14, 15, page 935.

3