Solving Recursive Sequences by Iteration

Lecture 25 Section 5.7

Robb T. Koether

Hampden-Sydney College

Thu, Feb 28, 2013

- Solving Recursive Relations by Iteration
 - The Towers of Hanoi
 - Another Example
 - Annuities

- Solving Recursive Relations by Iteration
 - The Towers of Hanoi
 - Another Example
 - Annuities

- Solving Recursive Relations by Iteration
 - The Towers of Hanoi
 - Another Example
 - Annuities

The Towers of Hanoi

- In the Towers of Hanoi problem, we found the recursive sequence to be $m_1 = 1$ and $m_n = 2m_{n-1} + 1$.
- We used it to calculate the first few terms: 1, 3, 7, 15.
- A nonrecursive formula for m_n would allow us to calculate m_n directly for an n.
- How do we find a nonrecursive formula for m_n ?

The Towers of Hanoi

 The method of iteration is to apply the recursive formula repeatedly, but postpone most of the calculations, until we see a pattern develop.

$$m_1 = 1.$$

 $m_2 = 2 + 1.$
 $m_3 = 2(2 + 1) + 1$
 $= 2^2 + 2 + 1.$
 $m_4 = 2(2^2 + 2 + 1) + 1$
 $= 2^3 + 2^2 + 2 + 1.$

The Towers of Hanoi

The pattern is clear:

$$m_n = 2^{n-1} + 2^{n-2} + \cdots + 2^2 + 2 + 1.$$

- This is a sum of a geometric series, for which the formula $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$ applies.
- Thus,

$$m_n = \frac{2^n - 1}{2 - 1}$$
$$= 2^n - 1.$$

- Solving Recursive Relations by Iteration
 - The Towers of Hanoi
 - Another Example
 - Annuities

Example

• Define a sequence $\{a_n\}$ by

$$a_0 = 1,$$

 $a_n = 5a_{n-1} - 2,$

for all n > 1.

• Use the method of iteration to find a nonrecursive formula.

Example

 Write expressions for the first few terms, until a clear pattern develops.

$$a_0 = 1.$$

$$a_1 = 5 - 2.$$

$$a_2 = 5(5 - 2) - 2$$

$$= 5^2 - 2 \cdot 5 - 2.$$

$$a_3 = 5(5^2 - 2 \cdot 5 - 2) - 2$$

$$= 5^3 - 2 \cdot 5^2 - 2 \cdot 5 - 2.$$

$$a_4 = 5(5^3 - 2 \cdot 5^2 - 2 \cdot 5 - 2) - 2$$

$$= 5^4 - 2 \cdot 5^3 - 2 \cdot 5^2 - 2 \cdot 5 - 2.$$

Example

Again, the pattern is clear:

$$a_n = 5^n - 2\left(5^{n-1} + \dots + 5^2 + 5 + 1\right)$$

$$= 5^n - 2\left(\frac{5^n - 1}{5 - 1}\right)$$

$$= 5^n - \frac{5^n - 1}{2}$$

$$= \frac{1}{2}(5^n + 1).$$

- Solving Recursive Relations by Iteration
 - The Towers of Hanoi
 - Another Example
 - Annuities

- An annuity is a sum of money from which we can draw over a period of time.
- Suppose the sum is earning 4% interest annually and a person deposits \$5,000 annually for 40 years.
- How much will he have at retirement?

- Let A_n be the amount in the account after n years.
- If we deposit \$5,000 at the *end* of each year, then $A_0 = 0$ and $A_1 = 5000$.
- At the end of each subsequent year, we earn 4% interest on the balance and then deposit another \$5,000.
- The recursive formula is

$$A_n = 0.04A_{n-1} + 5000.$$

We calculate

$$\begin{split} A_2 &= 1.04 \cdot 5000 + 5000 \\ &= 5000 \left(1.04 + 1 \right). \\ A_3 &= 1.04 \cdot 5000 \left(1.04 + 1 \right) + 5000 \\ &= 5000 \left(1.04^2 + 1.04 + 1 \right). \\ A_4 &= 1.04 \cdot 5000 \left(1.04^2 + 1.04 + 1 \right) + 5000 \\ &= 5000 \left(1.04^3 + 1.04^2 + 1.04 + 1 \right). \end{split}$$

Clearly,

$$A_n = 5000 \left(1.04^{n-1} + \dots + 1.04^2 + 1.04 + 1 \right).$$

So,

$$A_n = 5000 \left(\frac{1.04^n - 1}{1.04 - 1} \right)$$
$$= 5000 \left(\frac{1.04^n - 1}{0.04} \right)$$

 Generalize this to an interest rate of r, a deposit of P, and a period of n years.

 Given that the person has accumulated A dollars in his annuity, how much can he withdraw each year for m years of retirement if the balance continues to earn an interest rate of r?

- - The Towers of Hanoi
 - Another Example
 - Annuities

Assignment

- Read Section 5.7, pages 304 314.
- Exercises 2, 5, 7, 22, 23, 25, 26, 27, 52, page 314.