

Direct Proof – Floor and Ceiling

Lecture 17

Section 4.5

Robb T. Koether

Hampden-Sydney College

Wed, Feb 12, 2014

1 The Floor and Ceiling Functions

2 Theorems

3 Applications

4 Assignment

Outline

1 The Floor and Ceiling Functions

2 Theorems

3 Applications

4 Assignment

The Floor and Ceiling Functions

Definition (The Floor Function)

Let $x \in \mathbb{R}$. Define the **floor** function, denoted $\lfloor x \rfloor$, to be the unique integer n such that

$$n \leq x < n + 1.$$

Definition (The Ceiling Function)

Let $x \in \mathbb{R}$. Define the **ceiling** function, denoted $\lceil x \rceil$, to be the unique integer n such that

$$n - 1 < x \leq n.$$

Examples

- For example,
 - $\lfloor 3.8 \rfloor = 3$
 - $\lceil 3.8 \rceil = 4$
 - $\lfloor -3.8 \rfloor = -4$
 - $\lceil -3.8 \rceil = -3$
- Note that, for negative numbers, this is not the same as truncation.

Definition (The Round Function)

Let $x \in \mathbb{R}$. Define $\langle x \rangle = \lfloor x + 1/2 \rfloor$.

- We see that $\langle x \rangle$ is the value of x , rounded to the nearest integer.
- If x is exactly halfway between two integers, then it is rounded *up* to the next largest integer.

Outline

1 The Floor and Ceiling Functions

2 Theorems

3 Applications

4 Assignment

Theorem

Theorem

For all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.

Theorem

Proof.

- Let $x \in \mathbb{R}$ and let $n \in \mathbb{Z}$.
- Let $m = \lfloor x \rfloor \in \mathbb{Z}$ and let $e = x - m$.
- Then $x = m + e$ and $0 \leq e < 1$.
- Then

$$\begin{aligned}\lfloor x + n \rfloor &= \lfloor (m + e) + n \rfloor \\ &= \lfloor (m + n) + e \rfloor \\ &= m + n \\ &= \lfloor x \rfloor + n.\end{aligned}$$

Conjectures

- Is there a comparable statement involving $\lceil x + n \rceil$?
- Is it true that $\forall x, y \in \mathbb{R}$, $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$?
- Is it true that $\forall x \in \mathbb{R}$, $\lfloor 2x \rfloor = 2\lfloor x \rfloor$?
- Is it true that $\forall x \in \mathbb{R}$, $\lfloor x^2 \rfloor = (\lfloor x \rfloor)^2$?
- Is it true that $\forall x \in \mathbb{R}$, $\lfloor x + 1/2 \rfloor = \lceil x - 1/2 \rceil$?
- If they are not true for all $x, y \in \mathbb{R}$, then are they true for some $x, y \in \mathbb{R}$? Which ones?

Theorem

Theorem

For all real numbers x , $\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = \lfloor 2x \rfloor$.

Theorem

Proof.

- Let $x \in \mathbb{R}$.
- Let $n = \lfloor x \rfloor$ and $e = x - n$.
- Either $0 \leq e < \frac{1}{2}$ or $\frac{1}{2} \leq e < 1$.

Proof

Proof.

Case 1: Suppose $0 \leq e < 1/2$.

Then

$$1/2 \leq e + 1/2 < 1.$$

Therefore

$$\begin{aligned} \lfloor x \rfloor + \lfloor x + 1/2 \rfloor &= n + \lfloor n + e + 1/2 \rfloor \\ &= n + n \\ &= 2n \\ &= 2\lfloor x \rfloor. \end{aligned}$$

Proof

Proof.

Case 2: Suppose $1/2 \leq e < 1$.

Then,

$$0 \leq e - 1/2 < 1/2.$$

Therefore

$$\begin{aligned} \lfloor x \rfloor + \lfloor x + 1/2 \rfloor &= n + \lfloor n + e + 1/2 \rfloor \\ &= n + \lfloor (n + 1) + (e - 1/2) \rfloor \\ &= n + (n + 1) \\ &= 2n + 1. \end{aligned}$$

Proof

Proof.

Also, $0 \leq 2e - 1 < 1$.

Therefore,

$$\begin{aligned}\lfloor 2x \rfloor &= \lfloor 2n + 2e \rfloor \\ &= \lfloor 2n + 1 + (2e - 1) \rfloor \\ &= 2n + 1,\end{aligned}$$

Therefore $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = \lfloor 2x \rfloor$.

Proof

Proof.

- Therefore, for all $x \in \mathbb{R}$, $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = \lfloor 2x \rfloor$.

- Write a similar statement using the ceiling function.
- Write a similar statement using the round function.

Outline

1 The Floor and Ceiling Functions

2 Theorems

3 Applications

4 Assignment

Binary Search

- In a binary search of a list of size n , we begin by comparing the value to the middle element.
- If it matches, we are done. If it fails to match, we continue searching in the same manner in the lower half or the upper half.
- How many comparisons are required to find the value we are looking for?

Binary Search

- Suppose $n = 225$ and the elements are $a[0]$ through $a[224]$.
- We first compare to element $a[112]$.
- Next, we compare to element $a[65]$ or $a[168]$, and so on.

Binary Search

- Initially we have 225 elements.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.
- Again: 13 or 14.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.
- Again: 13 or 14.
- Again: 6 or 7.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.
- Again: 13 or 14.
- Again: 6 or 7.
- Again: 2 or 3.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.
- Again: 13 or 14.
- Again: 6 or 7.
- Again: 2 or 3.
- Again: 0 or 1.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.
- Again: 13 or 14.
- Again: 6 or 7.
- Again: 2 or 3.
- Again: 0 or 1.
- Done.

Binary Search

- Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.
- Again: 13 or 14.
- Again: 6 or 7.
- Again: 2 or 3.
- Again: 0 or 1.
- Done.

Binary Search

- Consider the calculation:

$$\lfloor 225 \div 2 \rfloor = 112,$$

$$\lfloor 112 \div 2 \rfloor = 56,$$

$$\lfloor 56 \div 2 \rfloor = 28,$$

$$\lfloor 28 \div 2 \rfloor = 14,$$

$$\lfloor 14 \div 2 \rfloor = 7,$$

$$\lfloor 7 \div 2 \rfloor = 3,$$

$$\lfloor 3 \div 2 \rfloor = 1.$$

Binary Search

- The maximum number of comparisons is $\lceil \log_2 225 \rceil = 8$.
- The minimum number of comparisons is $\lfloor \log_2 225 \rfloor = 7$.
- In general, the number is either $\lfloor \log_2 n \rfloor$ or $\lceil \log_2 n \rceil$.

Binary Search

- The maximum number of comparisons is $\lceil \log_2 225 \rceil = 8$.
- The minimum number of comparisons is $\lfloor \log_2 225 \rfloor = 7$.
- In general, the number is either $\lfloor \log_2 n \rfloor$ or $\lceil \log_2 n \rceil$.
- How many comparisons are required when $n = 10000$?

Binary Search

- The maximum number of comparisons is $\lceil \log_2 225 \rceil = 8$.
- The minimum number of comparisons is $\lfloor \log_2 225 \rfloor = 7$.
- In general, the number is either $\lfloor \log_2 n \rfloor$ or $\lceil \log_2 n \rceil$.
- How many comparisons are required when $n = 10000$?
- When $n = 100000$?

Binary Search

- The maximum number of comparisons is $\lceil \log_2 225 \rceil = 8$.
- The minimum number of comparisons is $\lfloor \log_2 225 \rfloor = 7$.
- In general, the number is either $\lfloor \log_2 n \rfloor$ or $\lceil \log_2 n \rceil$.
- How many comparisons are required when $n = 10000$?
- When $n = 100000$?
- When $n = 10^{12}$?

Puzzle

- How many trailing zeros are there in the decimal representation of $1000!$?
- $(1000! = 1000 \cdot 999 \cdot 998 \cdots 2 \cdot 1.)$

Puzzle

- A trailing zero is produced by, and only by, a factor of 10.
- A factor of 10 is produced by, and only by, a pair of prime factors 2 and 5.
- How many pairs of factors 2 and 5 are there in $1000!?$

Outline

1 The Floor and Ceiling Functions

2 Theorems

3 Applications

4 Assignment

Assignment

Assignment

- Read Section 4.5, pages 191 - 196.
- Exercises 4, 8, 9, 10, 15, 16, 20, 21, 24, 25, page 197.