Direct Proof – Floor and Ceiling

Lecture 17
Section 4.5

Robb T. Koether
Hampden-Sydney College

Wed, Feb 12, 2014
1. The Floor and Ceiling Functions

2. Theorems

3. Applications

4. Assignment
1 The Floor and Ceiling Functions

2 Theorems

3 Applications

4 Assignment
The Floor and Ceiling Functions

Definition (The Floor Function)
Let $x \in \mathbb{R}$. Define the floor function, denoted $\lfloor x \rfloor$, to be the unique integer n such that

$$n \leq x < n + 1.$$

Definition (The Ceiling Function)
Let $x \in \mathbb{R}$. Define the ceiling function, denoted $\lceil x \rceil$, to be the unique integer n such that

$$n - 1 < x \leq n.$$
Examples

- For example,
 - $\lfloor 3.8 \rfloor = 3$
 - $\lceil 3.8 \rceil = 4$
 - $\lfloor -3.8 \rfloor = -4$
 - $\lceil -3.8 \rceil = -3$

- Note that, for negative numbers, this is not the same as truncation.
Definition (The Round Function)

Let $x \in \mathbb{R}$. Define $\langle x \rangle = \lfloor x + 1/2 \rfloor$.

- We see that $\langle x \rangle$ is the value of x, rounded to the nearest integer.
- If x is exactly halfway between two integers, then it is rounded \textit{up} to the next largest integer.
Outline

1. The Floor and Ceiling Functions
2. Theorems
3. Applications
4. Assignment
Theorem

For all $x \in \mathbb{R}$ and all $n \in \mathbb{Z}$, $\lfloor x + n \rfloor = \lfloor x \rfloor + n$.
Theorem

Proof.

Let $x \in \mathbb{R}$ and let $n \in \mathbb{Z}$.
Let $m = \lfloor x \rfloor \in \mathbb{Z}$ and let $e = x - m$.
Then $x = m + e$ and $0 \leq e < 1$.
Then

$$\lfloor x + n \rfloor = \lfloor (m + e) + n \rfloor \quad \begin{array}{l}
= \lfloor (m + n) + e \rfloor \\
= m + n \\
= \lfloor x \rfloor + n.
\end{array}$$
Conjectures

- Is there a comparable statement involving $\lceil x + n \rceil$?
- Is it true that $\forall x, y \in \mathbb{R}, \lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$?
- Is it true that $\forall x \in \mathbb{R}, \lfloor 2x \rfloor = 2 \lfloor x \rfloor$?
- Is it true that $\forall x \in \mathbb{R}, \lfloor x^2 \rfloor = (\lfloor x \rfloor)^2$?
- Is it true that $\forall x \in \mathbb{R}, \lfloor x + 1/2 \rfloor = \lceil x - 1/2 \rceil$?
- If they are not true for all $x, y \in \mathbb{R}$, then are they true for some $x, y \in \mathbb{R}$? Which ones?
Theorem

For all real numbers x, \(\lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = \lfloor 2x \rfloor \).
Proof.

- Let $x \in \mathbb{R}$.
- Let $n = \lfloor x \rfloor$ and $e = x - n$.
- Either $0 \leq e < \frac{1}{2}$ or $\frac{1}{2} \leq e < 1$.

[Proof Box]

Robb T. Koether (Hampden-Sydney College) Direct Proof – Floor and Ceiling Wed, Feb 12, 2014 12 / 27
Proof.

Case 1: Suppose $0 \leq e < 1/2$.

Then

$$1/2 \leq e + 1/2 < 1.$$

Therefore

$$\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = n + \lfloor n + e + 1/2 \rfloor$$

$$= n + n$$

$$= 2n$$

$$= 2 \lfloor x \rfloor.$$
Proof.

Case 2: Suppose $1/2 \leq e < 1$.

Then,

$$0 \leq e - 1/2 < 1/2.$$

Therefore

$$\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = n + \lfloor n + e + 1/2 \rfloor$$

$$= n + \lfloor (n + 1) + (e - 1/2) \rfloor$$

$$= n + (n + 1)$$

$$= 2n + 1.$$
Proof.

Also, $0 \leq 2e - 1 < 1$.
Therefore,

$$\lfloor 2x \rfloor = \lfloor 2n + 2e \rfloor$$
$$= \lfloor 2n + 1 + (2e - 1) \rfloor$$
$$= 2n + 1,$$

Therefore $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = \lfloor 2x \rfloor$.
Proof.

Therefore, for all $x \in \mathbb{R}$, $\lfloor x \rfloor + \lfloor x + 1/2 \rfloor = \lfloor 2x \rfloor$.

- Write a similar statement using the ceiling function.
- Write a similar statement using the round function.
1 The Floor and Ceiling Functions
2 Theorems
3 Applications
4 Assignment
In a binary search of a list of size n, we begin by comparing the value to the middle element.

If it matches, we are done. If it fails to match, we continue searching in the same manner in the lower half or the upper half.

How many comparisons are required to find the value we are looking for?
Suppose $n = 225$ and the elements are $a[0]$ through $a[224]$.
- We first compare to element $a[112]$.
- Next, we compare to element $a[65]$ or $a[168]$, and so on.
Initially we have 225 elements.
Initially we have 225 elements.
We eliminate 1 and divide the rest in half: 112 in each half.
Initially we have 225 elements.
We eliminate 1 and divide the rest in half: 112 in each half.
We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
Initially we have 225 elements.

We eliminate 1 and divide the rest in half: 112 in each half.

We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.

We eliminate 1 more and divide: 27 or 28 in the halves.
Initially we have 225 elements.
- We eliminate 1 and divide the rest in half: 112 in each half.
- We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
- We eliminate 1 more and divide: 27 or 28 in the halves.
- Again: 13 or 14.
Initially we have 225 elements.

We eliminate 1 and divide the rest in half: 112 in each half.

We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.

We eliminate 1 more and divide: 27 or 28 in the halves.

Again: 13 or 14.

Again: 6 or 7.
Initially we have 225 elements.
We eliminate 1 and divide the rest in half: 112 in each half.
We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
We eliminate 1 more and divide: 27 or 28 in the halves.
Again: 13 or 14.
Again: 6 or 7.
Again: 2 or 3.
Initially we have 225 elements.
We eliminate 1 and divide the rest in half: 112 in each half.
We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
We eliminate 1 more and divide: 27 or 28 in the halves.
Again: 13 or 14.
Again: 6 or 7.
Again: 2 or 3.
Again: 0 or 1.
Initially we have 225 elements.
We eliminate 1 and divide the rest in half: 112 in each half.
We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.
We eliminate 1 more and divide: 27 or 28 in the halves.
Again: 13 or 14.
Again: 6 or 7.
Again: 2 or 3.
Again: 0 or 1.
Done.
Initially we have 225 elements.

We eliminate 1 and divide the rest in half: 112 in each half.

We eliminate 1 more and divide the rest in half: either 55 or 56 in the halves.

We eliminate 1 more and divide: 27 or 28 in the halves.

Again: 13 or 14.

Again: 6 or 7.

Again: 2 or 3.

Again: 0 or 1.

Done.
Consider the calculation:

\[
\left\lfloor \frac{225}{2} \right\rfloor = 112, \\
\left\lfloor \frac{112}{2} \right\rfloor = 56, \\
\left\lfloor \frac{56}{2} \right\rfloor = 28, \\
\left\lfloor \frac{28}{2} \right\rfloor = 14, \\
\left\lfloor \frac{14}{2} \right\rfloor = 7, \\
\left\lfloor \frac{7}{2} \right\rfloor = 3, \\
\left\lfloor \frac{3}{2} \right\rfloor = 1.
\]
The maximum number of comparisons is $\lceil \log_2 225 \rceil = 8$.

The minimum number of comparisons is $\lfloor \log_2 225 \rfloor = 7$.

In general, the number is either $\lfloor \log_2 n \rfloor$ or $\lceil \log_2 n \rceil$.

How many comparisons are required when $n = 10000$?

When $n = 100000$?

When $n = 10^{12}$?
The maximum number of comparisons is \(\lceil \log_2 225 \rceil = 8 \).
The minimum number of comparisons is \(\lfloor \log_2 225 \rfloor = 7 \).
In general, the number is either \(\lfloor \log_2 n \rfloor \) or \(\lceil \log_2 n \rceil \).
How many comparisons are required when \(n = 10000 \)?
Binary Search

- The maximum number of comparisons is $\lceil \log_2 225 \rceil = 8$.
- The minimum number of comparisons is $\lfloor \log_2 225 \rfloor = 7$.
- In general, the number is either $\lfloor \log_2 n \rfloor$ or $\lceil \log_2 n \rceil$.
- How many comparisons are required when $n = 10000$?
- When $n = 100000$?
The maximum number of comparisons is $\lceil \log_2 225 \rceil = 8$.

The minimum number of comparisons is $\lfloor \log_2 225 \rfloor = 7$.

In general, the number is either $\lfloor \log_2 n \rfloor$ or $\lceil \log_2 n \rceil$.

How many comparisons are required when $n = 10000$?

When $n = 100000$?

When $n = 10^{12}$?
Puzzle

How many trailing zeros are there in the decimal representation of $1000!$?

$(1000! = 1000 \cdot 999 \cdot 998 \cdots 2 \cdot 1.)$
A trailing zero is produced by, and only by, a factor of 10.

A factor of 10 is produced by, and only by, a pair of prime factors 2 and 5.

How many pairs of factors 2 and 5 are there in 1000!?
Assignment

- Read Section 4.5, pages 191 - 196.
- Exercises 4, 8, 9, 10, 15, 16, 20, 21, 24, 25, page 197.