Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Closure Properties of Decidable and Recognizable Languages Lecture 28 Problems 3.15 and 3.16

Robb T. Koether

Hampden-Sydney College

Wed, Oct 28, 2009

Outline

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Homework Review

Closure Properties of Decidable Languages

- Intersection
- Union

Closure Properties of Recognizable Languages
Intersection

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Union

Assignment

Homework Review

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Exercise 3.6, page 160.

In Theorem 3.21 we showed that a language is Turing-recognizable iff some enumerator enumerates it. Why didn't we use the following simpler algorithm for the forward direction of the proof? As before, s_1, s_2, \ldots is a list of all strings in Σ^* .

- E = "Ignore the input.
 - **1** Repeat the following for i = 1, 2, 3, ...
 - 2 Run M on s_i .
 - If it accepts, print out s_i ."

Homework Review

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Exercise 3.7, page 160.

Explain why the following is not a description of a legitimate Turing machine.

 $M_{\text{bad}} =$ "The input is a polynomial p over variables

 x_1,\ldots,x_n .

• Try all possible settings of x_1, \ldots, x_n to integer values.

- 2 Evaluate p on all of these settings.
- If any of these settings evaluates to 0, accept; otherwise, reject."

Closure Properties of Decidable Languages

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages

Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Theorem (Closure Properties of Decidable Languages)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The class of decidable languages is closed under

- Union
- Intersection
- Complementation
- Concatenation
- Star

Closure Under Intersection

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Theorem

If L_1 and L_2 are decidable, then $L_1 \cap L_2$ is decidable.

Closure of Intersection

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Proof.

- Let D_1 be a decider for L_1 and let D_2 be a decider for L_2 .
- Then build a decider *D* for L₁ ∩ L₂ according to the following diagram.

(日)

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Theorem

If L_1 and L_2 are decidable, then $L_1 \cup L_2$ is decidable.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Proof.

- Let D_1 be a decider for L_1 and let D_2 be a decider for L_2 .
- Then build a decider *D* for *L*₁ ∪ *L*₂ according to the following diagram.

(日)

Closure Under Other Operators

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homeworl Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

• How would we show that if L_1 and L_2 are decidable, then so are

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- \overline{L}_1
- L_1L_2
- L_1^*

Closure Properties of Recognizable Languages

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection

Union

Assignment

Theorem (Closure Properties of Recognizable Languages)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The class of recognizable languages is closed under

- Union
- Intersection
- Concatenation
- Star

Closure Under Intersection

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Theorem

If L_1 and L_2 are recognizable, then $L_1 \cap L_2$ is recognizable.

Closure Under Intersection

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Proof.

- Let R_1 be a recognizer for L_1 and let R_2 be a recognizer for L_2 .
- Then build a recognizer R for $L_1 \cap L_2$ according to the following diagram.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Theorem

If L_1 and L_2 are recognizable, then $L_1 \cup L_2$ is recognizable.

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Proof.

- Let R_1 be a recognizer for L_1 and let R_2 be a recognizer for L_2 .
- Then build a recognizer R for $L_1 \cup L_2$ according to the following diagram.

Closure of Union

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homeworł Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Proof.

• In that diagram, we must be careful to alternate execution between R_1 and R_2 .

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Closure Under Other Operators

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties of Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

• How would we show that if L_1 and L_2 are recognizable, then so are

- L_1L_2
- L_1^*
- Why is \overline{L}_1 not necessarily recognizable?

Assignment

Closure Properties of Decidable and Recognizable Languages

> Robb T. Koether

Homework Review

Closure Properties o Decidable Languages Intersection Union

Closure Properties of Recognizable Languages Intersection Union

Assignment

Homework

• Read Section 3.2, pages 152 - 154.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Problems 15, 16, page 161.