Finite Automata - Regular Operations

Lecture 7 Section 1.1

Robb T. Koether

Hampden-Sydney College

Wed, Sep 12, 2012

Outline

The Regular Operations

- Closure Properties
- Assignment

Outline

The Regular Operations

- Closure Properties
- Assignment

The Regular Operations

Definition (Union of languages)

The union of languages A and B is the language

$$A \cup B = \{ w \mid w \in A \text{ or } w \in B \}.$$

Definition (Concatenation of languages)

The concatenation of languages A and B is the language

$$A \circ B = \{uv \mid u \in A \text{ and } v \in B\}.$$

Definition (Kleene star of a language)

The Kleene star of a language A is the language

$$A^* = \{ w_1 w_2 \dots w_k \mid w_i \in A \text{ and } k \geq 0 \}.$$

The Regular Operations

- We often abbreviate $A \circ B$ as AB.
- Then we may abbreviate AA as A^2 , AAA as A^3 , and so on.
- The Kleene star of A can be written as

$$A^* = \{\varepsilon\} \cup A \cup A^2 \cup A^3 \cup \cdots.$$

Example (Regular operations)

- Let $A = \{ w \mid w \text{ contains an even number of } \mathbf{a} \text{'s} \}.$
- Let $B = \{ w \mid w \text{ contains an even number of } \mathbf{b}$'s $\}$.
- Describe the languages
 - A ∪ B
 - A ∘ B
 - A*
 - (A ∪ B)*
 - (A ∘ B)*
 - (A*)*

Example (Regular operations)

Design finite automata that accept

- A ∪ B
- \bullet $A \circ B$
- A*
- (*A* ∪ *B*)*
- (*A* ∘ *B*)*
- (A*)*

Example (Regular operations)

• A DFA for $A \cup B$.

• Design a DFA for $A \cap B$.

Example (Regular operations)

• A DFA for $A \circ B$.

Outline

The Regular Operations

Closure Properties

3 Assignment

Theorem (Closure of Regular Languages)

The class of regular languages is closed under the operations of union, concatenation, and star.

Proof.

Proof (union)

- Let $M_1 = \{Q_1, \Sigma_1, \delta_1, q_1, F_1\}$ be a DFA whose language is L_1 .
- Let $M_2 = \{Q_2, \Sigma_2, \delta_2, q_2, F_2\}$ be a DFA whose language is L_2 .
- We will define a DFA M whose language is $L_1 \cup L_2$.
- Let $M = \{Q, \Sigma, \delta, q_0, F\}$ where
 - $Q = Q_1 \times Q_2$.
 - $\bullet \ \Sigma = \Sigma_1 \cup \Sigma_2.$
 - $q_0 = (q_1, q_2)$.
 - $F = \{(p_1, p_2) \mid p_1 \in F_1 \text{ or } p_2 \in F_2\}.$

Proof.

Proof (union)

• Define $\delta: Q \times \Sigma \rightarrow Q$ by

$$\delta((p_1, p_2), a) = (\delta_1(p_1, a), \delta_2(p_2, a)).$$

• It is clear that the language of M is $L_1 \cup L_2$.

Proof.

Proof (concatenation, star)

- What machine will accept L₁ ∘ L₂?
- What machine will accept L₁*?

Concatenation Example

Example (Concatenation Example)

Let

$$L_1 = \{ w \in \Sigma^* \mid w \text{ has an even number of } \mathbf{a}\text{'s} \}$$

and

$$L_2 = \{ w \in \Sigma^* \mid w \text{ has an even number of } \mathbf{b}\text{'s} \}$$

• How would a DFA for L_1L_2 process the strings **ababb** and **ababbb**?

Other Operations

Definition (Intersection)

The intersection of languages A and B is the language

$$A \cap B = \{ w \mid w \in A \text{ and } w \in B \}.$$

Definition (Complement)

The complement of language A is the language

$$\overline{A} = \{ w \in \Sigma^* \mid w \notin A \}.$$

Theorem (Closure of Regular Languages)

The class of regular languages is closed under the operations of intersection and complementation.

Proof.

Proof (intersection, complement)

- What machine will accept $L_1 \cap L_2$?
- What machine will accept $\overline{L_1}$?

Outline

The Regular Operations

- Closure Properties
- Assignment

Assignment

Homework

- Read Section 1.1, pages 44 47.
- Exercises 4, 5, 6, pages 83 84.
- Problem 34, page 89.
- Design a DFA for the language $(A \circ B)^*$, where

```
A = \{ w \mid w \text{ contains an odd number of } \mathbf{a} \text{'s} \}

B = \{ w \mid w \text{ contains an odd number of } \mathbf{b} \text{'s} \}
```