
Vector Geometry I

A *line* in \mathbb{R}^n is the set of all vectors of the form

 $\mathbf{x} + t\mathbf{y}$,

where \mathbf{x}, \mathbf{y} are fixed vectors in \mathbb{R}^n ($\mathbf{y} \neq \mathbf{0}$) and $t \in \mathbb{R}$ is allowed to vary. The formula $\mathbf{x} + t\mathbf{y}$ is called the *parametric form* of the line.

1. Draw a picture of the line $\begin{bmatrix} 3 \\ -2 \end{bmatrix} + t \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Does the point $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ lie on this line? If so, what is the value of t at that point?

To find the parametric form of a line,

- \mathbf{x} can be any point on the line, and
- **y** can be any vector that points in the direction of the line.

A line is completely described by a *point* \mathbf{x} and a *direction* \mathbf{y} .

2. Find an expression in parametric form for the line in \mathbb{R}^2 that passes through $\mathbf{u} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

and
$$\mathbf{v} = \begin{bmatrix} 3\\1 \end{bmatrix}$$
.

3. Do the three vectors

$$\mathbf{u} = \begin{bmatrix} 1\\2\\0\\3 \end{bmatrix}, \mathbf{v} = \begin{bmatrix} 3\\2\\-2\\-1 \end{bmatrix}, \text{ and } \mathbf{w} = \begin{bmatrix} 0\\2\\1\\5 \end{bmatrix},$$

all lie on the same line? How can you tell?

4. Do the two lines below intersect? If so, where? If not, explain how you know.

$$\left\{ \begin{bmatrix} 1\\2\\0 \end{bmatrix} + \begin{bmatrix} 1\\1\\-1 \end{bmatrix} s : s \in \mathbb{R} \right\} \text{ and } \left\{ \begin{bmatrix} 3\\2\\1 \end{bmatrix} + \begin{bmatrix} 1\\-2\\1 \end{bmatrix} t : t \in \mathbb{R} \right\}$$

5. Does the line

$$\left\{ \begin{bmatrix} 7\\0\\0 \end{bmatrix} + r \begin{bmatrix} -1\\1\\1 \end{bmatrix} : r \in \mathbb{R} \right\}$$

intersect the plane

$$\left\{ \begin{bmatrix} 0\\7\\9 \end{bmatrix} + s \begin{bmatrix} 5\\-4\\-1 \end{bmatrix} + t \begin{bmatrix} 2\\-1\\3 \end{bmatrix} : s, t \in \mathbb{R} \right\}?$$

If so, where?