1. Prove that if $\limsup s_n = +\infty$ and k > 0, then $\limsup (ks_n) = +\infty$.

2. Use the $\epsilon - \delta$ definition to prove that $\lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$.

3. Let $f: \mathbb{R} \to \mathbb{R}$ and suppose that $\lim_{x\to c} f(x) > 0$. Prove that there exists a deleted neighborhood U of c such that f(x) > 0 for all $x \in U$.