
Algebraic Structures Homework #13 Solutions

1. Chapter 13, Problem 1. Compute the G-equivalence classes (i.e, orbits) for the
following group actions.

(a) G = GL2(R) and X = R2.

Solution: The orbit of the zero vector is OrbG(0) = {0} since every matrix
maps 0 to 0. The orbit of any other vector is all of R2\{0}, since there is an
invertible matrix that will map any nonzero vector to any other.

(b) G = D4 and X = {1, 2, 3, 4}.

Solution: Since D4 includes all four rotations, all of the orbits are the same:

OrbG(1) = OrbG(2) = OrbG(3) = OrbG(4) = {1, 2, 3, 4}.

(c) X = G, where G acts by left multiplication.

Solution: Take any a, b in G, and notice that left multiplication by ba−1 maps
a to b. So the group can map a to any b. That means that the orbit of a is
everything. In other words, OrbG(a) = G for all a ∈ G.

(d) X = G, where G acts by conjugation.

Solution: The orbits of a group acting on itself by conjugation are called con-
jugacy classes. That’s all you need to say, although it might be nice to point
out that the conjugacy class for the identity only contains the identity. Without
knowing more about G, you can’t say anything else about the other conjugacy
classes.

(e) Let H ≤ G and LH be the set of left cosets of H. Then X = LH where G acts on
X by the action

(g, xH) 7→ gxH

Solution: As in part (c), we can find a g ∈ G which will map x to any point
in G. Therefore the orbit of any left coset is the whole set X.



2. Chapter 13, Problem 4. Let G be the additive group of real numbers. Let the action
of θ ∈ G on the real plane R2 be given by rotating the plane counterclockwise about the
origin through θ radians. Let P be a point on the plane other than the origin.

(a) Show that R2 is a G-set.

Solution: We HTS that:

1. Rotating by θ1 and then rotating by θ2 is the same as rotating by θ1 + θ2.

2. Rotating by the identity 0 ∈ R leaves every vector fixed.

Now that I written these two conditions clearly, it is obvious that they are true.

(b) Describe geometrically the orbit containing P .

Solution: If you rotate P through all possible angles, then you will get the
circle centered at the origin that contains P .

(c) Find the group GP (i.e., StabG(P )).

Solution: The stabilizer subgroup of the origin is every rotation. If P is not
the origin, then StabG(P ) is the set of all rotation angles that don’t actually
change P . Any integer multiple of 2π works. So StabG(P ) = 2πZ.

3. Chapter 13, Problem 5. Let G = A4 and suppose G acts on itself by conjugation.

(a) Determine the orbits of each element in G.

Solution: It might help to have a list of all 12 elements in A4. Here they are:

{(), (2, 3, 4), (2, 4, 3), (1, 2)(3, 4), (1, 2, 3), (1, 2, 4),

(1, 3, 2), (1, 3, 4), (1, 3)(2, 4), (1, 4, 2), (1, 4, 3), (1, 4)(2, 3)}
Let’s focus on the orbit of one 3-cycle: (1, 2, 3). By theorem 6.9,

τ(1, 2, 3)τ−1 = (τ(1), τ(2), τ(3)), for all τ ∈ G.

Therefore, we can find the orbit of (1, 2, 3) by plugging each τ ∈ G into the
formula above and seeing what we get.

OrbG((1, 2, 3)) = {(1, 2, 3), (2, 4, 3), (1, 4, 2), (1, 3, 4)}



We can also find the orbit of (1, 3, 2) using the same technique.

OrbG((1, 3, 2) = {(1, 3, 2), (2, 3, 4), (1, 2, 4), (1, 4, 3)}

Since we have found all eight 3-cycles in G, we don’t need to find the orbits of
any of the remaining 3-cycles. The orbit of the identity under conjugation is
easy since τ()τ−1 = () for all τ .

OrbG(()) = {()}

For elements like (1, 2)(3, 4) ∈ G, we can use the fact that

τ(1, 2)(3, 4)τ−1 = τ(1, 2)τ−1τ(3, 4)τ−1 = (τ(1), τ(2))(τ(3), τ(4))

to find the orbit.

OrbG((1, 2)(3, 4)) = {(1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

(b) Determine the isotropy (aka, stabilizer) subgroups for each element of G.

Solution: It helps to find the stabilizer subgroups if you use the orbit stabilizer
theorem |G| = |OrbG(g)||StabG(g)|. Since each 3-cycle has an orbit with 4
elements, and |G| = 12, it follows that the stabilizer subgroup of a 3-cycle in G
has 3 elements. If σ is a 3-cycle, then σ stabilizes itself, and () stabilizes σ, so

StabG(σ) = {(), σ, σ2}.

Any element of the form (a, b)(c, d) has 3 elements in its orbit, so it must contain
4 elements in its stabilizer subgroup. Once you know that, it is not hard to verify
that

StabG((a, b)(c, d)) = {(), (a, b)(c, d), (a, c)(b, d), (a, d)(b, c)}.

Finally, the identity is easy, since everything stabilizes the identity, so

StabG(()) = G.



4. Chapter 13, Problem 20. A group acts faithfully on a G-set X if the identity is the
only element of G that leaves every element of X fixed. Show that G acts faithfully on
X if and only if no two distinct elements of G have the same action on each element of
x.

Solution: (=⇒) Suppose that G acts faithfully on X and yet g1x = g2x for all
x ∈ X. Then g−1

1 g2x = x for all x ∈ X. Therefore g−1
1 g2 = e so g1 = g2.

(⇐=) If g1x = g2x for all x ∈ X implies that g1 = g2, then gx = x implies that g = e
immediately. Therefore G acts faithfully. �

5. Chapter 13, Problem 23. Let |G| = pn and suppose that |Z(G)| = pn−1 for p prime.
Prove that G is abelian.

Solution: If |Z(G)| = pn−1, then chose some g ∈ G\Z(G). Note that Z(G) ⊂
StabG(g). Also g ∈ StabG(g). Therefore StabG(g) is a subgroup of G containing at
least pn−1+1 elements. Since the only divisor of pn greater than pn−1 is pn, we use the
theorem of Lagrange to conclude that |StabG(g)| = pn and therefore StabG(g) = G.
Thus hgh−1 = g for all h ∈ G. So g ∈ Z(G), a contradiction. Therefore |Z(G)|
cannot equal pn−1 allowing us to conclude anything we want. �


