
Algebraic Structures Midterm 1 Review

Example Proof Problem Solutions

1. Prove that 1 + 4 + 9 + ... + n2 =
n(n + 1)(2n + 1)

6
.

Solution: Let’s use induction to prove this. Notice that when n = 1, this statement
says 1 = 1(2)(3)

6
which is true. Now, suppose that the statement is true for some

n ∈ N. That is, suppose that

1 + 4 + 9 + ... + n2 =
n(n + 1)(2n + 1)

6
.

Then,

1 + 4 + 9 + ... + n2 + (n + 1)2 =
n(n + 1)(2n + 1)

6
+ (n + 1)2 =

=
n(n + 1)(2n + 1)

6
+

6(n + 1)2

6

=
2n3 + 3x2 + x

6
+

6(n2 + 2n + 1)

6

=
2n3 + 9x2 + 13n + 1

6
.

Note that

=
2n3 + 9x2 + 13n + 6

6
=

(n + 1)(n + 2)(2n + 3)

6
,

so

1 + 4 + 9 + ... + n2 + (n + 1)2 =
(n + 1)(n + 2)(2n + 3)

6

which proves that formula for all n. �



2. Prove that A\(B ∪ C) = (A\B) ∩ (A\C).

Solution: To show that two sets are equal, you must prove that each set is a subset
of the other. So we break our proof into two parts:

Claim 1: A\(B ∪ C) ⊆ (A\B) ∩ (A\C).

Suppose that x ∈ A\(B ∪ C). That means x ∈ A and x /∈ (B ∪ C). In other words,
x /∈ B and x /∈ C. Thus x ∈ A\B and x ∈ A\C. So x ∈ (A\B) ∩ (A\C).

Claim 2: (A\B) ∩ (A\C) ⊆ A\(B ∪ C).

Suppose that x ∈ (A\B) ∩ (A\C). Then x is in A and not in B, and also x is in A
and not in C. So x is in A but x is not in B ∪ C. So x ∈ A\(B ∪ C). �

3. Let S = R\{−1} and define a binary operation on S by a ∗ b = a + b + ab. Prove that
(S, ∗) is an abelian group.

Solution: We need to prove two things: (1) that S is a group under the operation ∗
and (2) that the operation ∗ is commutative. It actually doesn’t matter which order
we prove these, so I will prove commutativity first. Notice that a ∗ b = a + b + ab =
b + a + ba = b ∗ a for all a, b ∈ S, so the operation is commutative.

To prove that S is a group, we need to make the following observations.

1. We have to show that ∗ is associative, since it is a new operation (not one
inherited from a larger group). So we have to show that (a ∗ b) ∗ c = a ∗ (b ∗ c)
for all a, b, c ∈ S. Consider

(a ∗ b) ∗ c = (a + b + ab) + c + (a + b + ab)c =

= a + b + ab + c + ac + bc + abc.

Now, let’s factor a out of terms where a is a factor. We get:

a + b + c + bc + a(b + c + bc)

which is precisely a+ (b+ c+ bc) +a(b+ c+ bc) = a∗ (b∗ c). So ∗ is associative.

2. To show that S is closed under ∗, we need to make sure that a ∗ b never equals
−1. Notice that if a ∗ b = a+ b+ ab = −1, then a+ b+ ab+ 1 = 0. If we factor
out a where we can, we get: a(b + 1) + (b + 1) = (b + 1)(a + 1) = 0. Once you
look at the formula this way, it is clear that since a and b are not −1, neither
is a + b + ab. Therefore S is closed.

3. We need to show that S has an identity. Notice that a ∗ 0 = a + 0 + 0 = a, so
S does indeed have an identity. It is 0.



4. Finally, we need to prove that every a ∈ S has an inverse. Choose any a ∈ S.

Let b =
−a

1 + a
. Notice that b cannot equal −1, since if it did:

−1 =
−a

1 + a
=⇒ a = 1 + a

which is impossible. Thus b ∈ S. Now,

a ∗ b = a +
−a

1 + a
+ a

−a
1 + a

=

=
a(1 + a)

1 + a
+
−a

1 + a
+
−a2

1 + a
= 0

which is the identity. �

4. Prove that if H and K are both subgroups of a group G, then H ∩K is also a subgroup
of G.

Solution: To prove that H ∩ K is a subgroup, we have to make sure that it is
closed, that it contains the identity, and that every element in H ∩K has an inverse
in H ∩K.

1. Suppose that x, y ∈ H ∩ K. Then x, y ∈ H and x, y ∈ K. Since H and K
are each closed, we conclude that xy ∈ H and xy ∈ K, so xy ∈ H ∩K. Thus
H ∩K is closed.

2. Since e ∈ H and e ∈ K, it follows that e ∈ H ∩K.

3. If x ∈ H ∩K, then x−1 ∈ H and x−1 ∈ K, since both H and K are subgroups.
Thus x−1 ∈ H ∩K.

�

5. Prove that every finite group of even order has a subgroup of order 2.

Hint: You can prove this claim by proving even more! Show that the number of
elements of order 2 in a finite group is odd. That will imply that there is a subgroup
of order 2.


