Algebraic Structures

Things You Should Know

- You should know the following definitions and concepts: Direct product of groups, finitely generated group, normal subgroup, factor group, group homomorphism, kernel, ring, integral domain, field, unit, ring homomorphism, ideal, maximal ideal, prime ideal.
- Here are some of the theorems that you should definitely know: The Fundamental Theorem of Finitely Generated Abelian Groups, The Fundamental Theorem of Algebra, The Division Algorithm for Polynomials
- You should know the following fields: \mathbb{Q} , \mathbb{R} , \mathbb{C} , $\mathbb{Q}(\sqrt{\alpha})$, \mathbb{Z}_p . You should also know which of the following rings are integral domains: \mathbb{Z} , $n\mathbb{Z}$, \mathbb{Z}_n , $M_2(\mathbb{R})$, $M_2(\mathbb{Z})$, R[x] (when R is any commutative ring with identity), F[x] (when F is any field).
- Make sure you review all old homework problems, particularly the short answer problems.

Example Problems

- 1. Consider the polynomial $p(x) = x^4 x^3 x 1 \in \mathbb{R}[x]$.
 - (a) Verify that $i \in \mathbb{C}$ is a root of p(x).
 - (b) Use the fact that complex roots of real polynomials occur in conjugate pairs to find another root of p(x).
 - (c) What are the two factors corresponding to the roots in parts (a) and (b)? What is the product of the two factors? Is it a real polynomial?
 - (d) Use the division algorithm to factor p(x).
 - (e) What is the complete factorization of p(x) over \mathbb{C} ? What are all of the roots of p(x)?
 - (f) Is p(x) irreducible in $\mathbb{Q}[x]$? What about in $\mathbb{R}[x]$?
- 2. Up to isomorphism, list all possible abelian groups of order 24.
- 3. What is the multiplicative inverse of $1 + \sqrt{5}$ in the extension field $\mathbb{Q}(\sqrt{5})$?
- 4. Is \mathbb{R} an ideal in \mathbb{C} ? Why or why not?
- 5. Is the polynomial $x^2 x 1$ irreducible in \mathbb{Z}_3 ? If so, list the elements of the field $\mathbb{Z}_3[x]/\langle x^2 x 1\rangle$? If not, factor $x^2 x 1$.
- 6. Suppose that $N_1 \triangleleft G_1$ and $N_2 \triangleleft G_2$. Prove that $N_1 \times N_2 \triangleleft G_1 \times G_2$.
- 7. Prove that there are no nontrivial ideals in any field.
- 8. Prove that if G has only one subgroup of order 5, then that subgroup is normal.