Definition of an Ordered Field

A **field** is a set F that satisfies the following axioms.

Addition Axioms

- 1. F is Closed under Addition. If $x, y \in F$, there is an element $x + y \in F$ called the *sum* of x and y.
- 2. Addition is Commutative: x + y = y + x for all $x, y \in F$.
- 3. Addition is Associative: $(x+y)+z=x+(y+z), \ \forall x,y,z\in F$.
- 4. Additive Identity: There is an element $0 \in F$ such that x + 0 = x for every $x \in F$.
- 5. Additive Inverse: For every $x \in F$, there is an element $-x \in F$ such that x + (-x) = 0.

Multiplication Axioms

- 1. F is Closed under Multiplication. If $x, y \in F$, there is an element $xy \in F$ called the *product* of x and y.
- 2. Multiplication is Commutative: xy = yx for all $x, y \in F$.
- 3. Multiplication is Associative: $x(yz) = (xy)z, \ \forall x, y, z \in F$.
- 4. **Multiplicative Identity**: There is a unique element $1 \in F$ such that 1x = x for all $x \in F$.
- 5. Multiplicative Inverses: For every $x \in F \setminus \{0\}$, there is a unique element x^{-1} such that $xx^{-1} = 1$.
- 6. Distributive Law: x(y+z) = xy + xz, $\forall x, y, z \in F$.

An **ordered field** is a field F with a relation < that satisfies the following four additional order axioms.

Order Axioms

- 1. **Trichotomy Law**: For all $x, y \in F$ exactly one of the following holds: x = y, x < y, or y < x.
- 2. < is Transitive: < is a transitive relation on F.
- 3. Additive Property: $x < y \Rightarrow x + z < y + z, \ \forall x, y, z \in F$.
- 4. **Multiplicative Property**: For all $x, y, z \in F$, if x < y and z > 0, then xz < yz.