- 1. (10 points) Use the ϵ -N definition of convergence to prove that $\lim_{n\to\infty} \frac{1}{\sqrt[3]{n}} = 0$.
- 2. (10 points) Suppose that $A \subseteq \mathbb{R}$ is a closed set, and (s_n) is a convergent sequence such that $s_n \in A$ for all $n \in \mathbb{N}$. Prove that $\lim s_n \in A$.
- 3. (10 points) Suppose that (s_n) is a convergent sequence such that $a \leq s_n \leq b$ for all $n \in \mathbb{N}$. Prove that $a \leq \lim s_n \leq b$.
- 4. (10 points) Suppose that $\lim s_n = s$ where s is a positive number. Prove that there exists $N \in \mathbb{R}$ such that $s_n > 0$ for all n > N.