Math 242

- 1. Given the three vectors $\mathbf{a} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$, $\mathbf{b} = \mathbf{i} + \mathbf{k}$, and $\mathbf{c} = \mathbf{j} + 2\mathbf{k}$
 - (a) Find the length of **a** and find a unit vector in the direction of **a**.
 - (b) Find a vector that is orthogonal to both **b** and **c**
 - (c) Determine whether the three vectors **a**, **b**, **c** are colinear or not.
- 2. Find the equation of the plane that passes through the point (1, 2, 3) and contains the line x = 3t, y = 1 + t, z = 2t.
- 3. Find the unit tangent vector $\mathbf{T}(t)$ to the parametric curve $\mathbf{r}(t) = \cos t\mathbf{i} + 3t\mathbf{j} + 2\sin 2t\mathbf{k}$ at the point where t = 0.
- 4. Find the tangent plane to the elliptic paraboloid $z = x^2 + 3y^2$ at the point P = (1, 1, 4).
- 5. Use implicit differentiation to find $\partial z/\partial x$ and $\partial z/\partial y$, where $x^2 + y^2 + z^2 = 3xyz$.
- 6. Consider the function $f(x, y) = 2\sqrt{x} y^2$.
 - (a) Find the directional derivative of f at the point (1,2) in the direction $v = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$.
 - (b) Find the maximum rate of change of f at the point (1, 2). In what direction does it occur?
- 7. Evaluate the double integral below, over the region $D = \{(x, y) \mid 0 \le x \le 1, 0 \le y \le \sqrt{x}\},\$

$$\iint \frac{2y}{1+x^2} \, dA.$$

8. Evaluate the triple integral below, where E lies above the z = 0 plane, below the plane z = yand inside the cylinder $x^2 + y^2 = 4$:

$$\iiint_E yz \, dV$$

- 9. Evaluate the line integral $\int_C F \cdot d\mathbf{r}$, where $F(x, y, z) = x\mathbf{i} z\mathbf{j} + y\mathbf{k}$ and the curve C is parametrized by $\mathbf{r}(t) = 2t\mathbf{i} + 3t\mathbf{j} t^2\mathbf{k}$, $0 \le t \le 1$.
- 10. Show that the line integral is independent of path and evaluate it:

$$\int_{C} (1 - ye^{-x}) \, dx + e^{-x} \, dy, \ C \text{ is any path from } (0,1) \text{ to } (1,2)$$

11. Use Green's Theorem to evaluate the line integral

$$\int_C y^3 dx - x^3 dy,$$

C is the circle $x^2 + y^2 = 4$ with counterclockwise orientation.

12. Evaluate $\int_C ye^x ds$ where C is the line segment joining (1, 2) to (4, 7).