Math 242 - Homework 1

Part 1

- 1. Sketch the region of the plane whose polar coordinates satisfy the given conditions.
 - (a) $1 \le r \le 2$, $\pi/4 \le \theta \le \pi$
 - (b) $0 < r \le 4$
 - (c) $-1 \le r \le 1$, $\pi/4 \le 3\pi/4$
- 2. Sketch the curve with the given polar equation without a computer.
 - (a) $r = \sin(\theta)$

(b)
$$r^2\theta = 1$$

3. The figure below shows the graph of r as a function of θ in rectangular coordinates. Use it to sketch the corresponding polar curve.

- 4. Use a computer or calculator to graph the polar curve. Choose the parameter interval to make sure you produce the entire curve.
 - (a) $r = 1 + 2\sin(\theta/2)$ (nephroid of Freeth)
 - (b) $r = \sqrt{1 0.8 \sin^2 \theta}$ (hippopede)
- 5. (a) Use a computer or calculator to investigate the family of curves defined by the polar equations $r = \sin(n\theta)$, where n is a positive integer. How is the number of loops related to n?
 - (b) How is the number of loops related to n if $r = |\sin(n\theta)|$? In Sage the absolute value function is: abs().
- 6. A family of curves is given by the equations $r = 1 + c \sin \theta$, where c is a real number. What kinds of shapes are possible? How do the shapes of the curve change as c changes? Make sure you graph enough examples to support your conclusions. (These curves are called **limaçons**).

Part 2

- 7. Graph the polar curves $r = \cos(2\theta)$ and $r = \frac{1}{2}$. At how many points do the two curves intersect?
- 8. Use a computer to sketch the curve and then find the area it encloses.
 - (a) $r = 2\cos(3\theta)$
 - (b) $r^2 = \sin(2\theta), \ 0 \le \theta \le \pi/2.$
- 9. Express dy/dx as a function of θ for the curve $r = 3 + 2\sin(\theta)$