Math 242

Midterm 1 Solutions

1. (6 points) Find a unit vector that points in the same direction as the vector $\mathbf{a} = (3, 0, 4)$.

Solution: A unit vector has length one, so divide a by its length:

$$\mathbf{a}/||\mathbf{a}|| = (3/5, 0, 4/5).$$

2. (6 points) Find the vector equation for the line passing through P = (3, -2, 7) and Q = (2, -2, 5).

Solution: Use P - Q as the direction vector. P - Q = (1, 0, 2). Use either point as the initial point. One possible solution is:

$$(3, -2, 7) + t(1, 0, 2).$$

3. (8 points) Find the area of the parallelogram with vertices A = (0, 0, 0), B = (1, 2, 3), C = (2, 3, 3) and D = (1, 1, 0).

Solution: The two sides adjacent to vertex A in the parallelogram are given by the vectors B - A = (1, 2, 3) and D - A = (1, 1, 0). The area is the magnitude of the cross product:

$$||(1,2,3) \times (1,1,0)|| = ||-3\mathbf{i}+3\mathbf{j}+\mathbf{k}|| = \sqrt{9+9+1} = \sqrt{19}.$$

4. (8 points) Draw the regions described by the following polar coordinate inequalities.

(a)
$$1 \le r \le 2$$
 (b) $-1 \le r \le 1$ and $0 \le \theta \le \pi/4$.

5. (8 points) Find the slope of the tangent line to the parametric curve $x = \ln t$, $y = 1 + t^2$; at t = 1.

Solution: The slope is
$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt} = \frac{2t}{1/t} = 2t^2$$
 Therefore, at $t = 1, \, dy/dx = 2$.

6. (8 points) Sketch the graph defined by $\mathbf{v} + t\mathbf{w}$ where $\mathbf{v} = (4, -2)$ and $\mathbf{w} = (-3, 2)$.

7. (4 points) Find one normal vector to the plane x - 2y + 3z = -4.

Solution: The coefficients of the scalar equation of a plane are the entries of a normal vector:

(1, -2, 3).

8. (8 points) Does the plane defined by the normal vector $\mathbf{n} = (4, -3, 2)$ that passes through the point $\mathbf{r_0} = (1, 0, 0)$ contain the point P = (1, 2, 3)? Why or why not?

Solution: The vector equation for this plane is $\mathbf{n} \cdot (\mathbf{r} - \mathbf{r_0}) = 0$. Let $\mathbf{r} = P = (1, 2, 3)$ and plug-in to see that

$$(4, -3, 2) \cdot ((1, 2, 3) - (1, 0, 0)) = (4, -3, 2) \cdot (0, 2, 3) = 0 - 6 + 6 = 0,$$

therefore P is in the plane because it satisfies the equation.

9. (8 points) Using the vectors ${\bf a}$ and ${\bf b}$ shown below, draw the following vectors.

10. (12 points) Find the area inside the polar curve $r = \sqrt{1 + \sin(4\theta)}$ (graph shown below).

Solution:

$$Area = \frac{1}{2} \int_0^{2\pi} r^2 d\theta = \frac{1}{2} \int_0^{2\pi} 1 + \sin(4\theta) d\theta = \frac{1}{2} \left[\theta - \frac{1}{4} \cos(4\theta) \right]_0^{2\pi} = \frac{1}{2} \left[(2\pi - \frac{1}{4} \cos(8\pi)) - (0 - \frac{1}{4} \cos(0)) \right] = \pi$$

11. (12 points) Show that the diagonals of a rhombus are always perpendicular. Hint: let $\mathbf{x} = \overrightarrow{AB}$ and $\mathbf{y} = \overrightarrow{AD}$.

Solution: The two diagonals are given by the vectors $\mathbf{x} + \mathbf{y}$ and $\mathbf{x} - \mathbf{y}$. To see if they are orthogonal, we compute the dot product:

$$(\mathbf{x} + \mathbf{y}) \cdot (\mathbf{x} - \mathbf{y}) = \mathbf{x} \cdot \mathbf{x} - \mathbf{x} \cdot \mathbf{y} + \mathbf{y} \cdot \mathbf{x} - \mathbf{y} \cdot \mathbf{y}$$
$$= \mathbf{x} \cdot \mathbf{x} - \mathbf{y} \cdot \mathbf{y} = ||\mathbf{x}||^2 - ||\mathbf{y}||^2.$$

Since $||\mathbf{x}|| = ||\mathbf{y}||$, the dot product above is zero and therefore the diagonals are orthogonal.

- 12. (12 points) Let $\mathbf{a} = -3\mathbf{i} + 4\mathbf{j} + \mathbf{k}$ and $\mathbf{b} = \mathbf{i} + \mathbf{j} + \mathbf{k}$. Compute the values of each expression, or explain why the expression does not make sense.
 - (a) $||\mathbf{ab}||$

Solution: Does not make sense because you don't multiply vectors.

(b) $||\mathbf{a}|| ||\mathbf{b}|| \cos \theta$, where θ is the angle between \mathbf{a} and \mathbf{b} .

Solution: $||\mathbf{a}|| ||\mathbf{b}|| \cos \theta = \mathbf{a} \cdot \mathbf{b}$, therefore we just compute $(-3, 4, 1) \cdot (1, 1, 1) = 2$.

(c) a^{2}

Solution: Doesn't makes sense because you can't square vectors.

(d) $\mathbf{a} \times \mathbf{b}$

Solution:
$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ -3 & 4 & 1 \\ 1 & 1 & 1 \end{vmatrix} = \begin{vmatrix} 4 & 1 \\ 1 & 1 \end{vmatrix} \mathbf{i} - \begin{vmatrix} -3 & 1 \\ 1 & 1 \end{vmatrix} \mathbf{j} + \begin{vmatrix} -3 & 4 \\ 1 & 1 \end{vmatrix} \mathbf{k} = 3\mathbf{i} + 4\mathbf{j} - 7\mathbf{k}.$$