Homework 3

Quantum Computing

Fact. Normal matrices $A, B \in M_n$ commute if and only if they are both diagonalizable by the same unitary matrix U.

For two operators $A, B \in M_n$, the **commutator** of A and B is:

[A, B] = AB - BA

Exercises

- 1. Show that [A, B] = 0 if and only if A and B commute.
- 2. Let

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

be the Pauli matrices. Compute the following: $[\sigma_1, \sigma_2], [\sigma_2, \sigma_3], \text{ and } [\sigma_1, \sigma_3].$

- 3. Compute $e^{i\theta\sigma_1}$. Hint, diagonalize σ_1 first. Then compare with (2.31) in section 2.2.1 of the lecture notes.
- 4. Prove that $\lim_{n\to\infty} \left(1+\frac{z}{n}\right)^n = e^z$ for any $z \in \mathbb{C}$.