Homework 5

Let $A \in M_n(\mathbb{C})$ and $b \in \mathbb{C}^n$. An **affine linear transformation** is a transformation of the form $x \mapsto Ax + b$.

Exercises

- 1. Prove that the composition of two affine linear transformations is affine linear.
- 2. Prove that if U is a real 2-by-2 unitary matrix, then if det U = 1, then U is a rotation, and if det U = -1, then it is a reflection.
- 3. Suppose that U is a real 3-by-3 unitary matrix and det U = 1.
 - (a) Prove that U must have eigenvalues 1, $e^{i\theta}$ and $e^{-i\theta}$ for some $\theta \in [0, 2\pi)$.
 - (b) Prove that U is a rotation of \mathbb{R}^3 . Hint: typically U has two complex eigenvectors x_1 and x_2 . Suppose that y is a real vector spanned by x_1 and x_2 . What is Uy?
 - (c) What is its axis of rotation of U? What is the rotation angle?
- 4. Prove that α is a rational multiple of 2π if and only if there is an m such that $R(\alpha)^m = I$ where $R(\alpha)$ is the 2-by-2 rotation matrix corresponding to α .
- 5. Let $x, y \in \mathbb{C}^2$ be unit vectors, and suppose that the angle between x and y is θ . Prove that the corresponding points on the Bloch sphere are separated by an angle of 2θ .