Calculus I - Math 141

Midterm 1

Name:

You must show all work to earn full credit. No calculators allowed. If you do not have room in the given space to answer a question, use the back of another page and indicate clearly which work goes with which problem.

Problem	Maximum Points	Your Score
1	12	
2	10	
3	8	
4	10	
5	20	
6	6	
7	10	
8	8	
9	16	
Total:	100	

- 1. (12 points) As you go deeper and deeper in the ocean, the pressure increases linearly. At the surface, pressure is 1 atmosphere (ATM). For every 10 meters underwater, pressure increases by 1 additional ATM.
 - (a) Find a formula for pressure (P) as a function of depth underwater (d).
 - (b) Draw and label a graph of pressure vs. depth.

(c) What is the derivative of the pressure function? Your answer should be a number. Explain what this number represents and what units are used to measure it.

- 2. (10 points) A rock thrown up in the air has height $h(t) = 8t 16t^2 + 4$ measured in feet at time t seconds.
 - (a) Find a formula for the velocity of the rock as a function of time.
 - (b) Find a formula for the acceleration of the rock.

3. (8 points) The graph of a function g(x) is shown below. The slope of the secant line that passes through points P and Q is represented by the difference quotient $\frac{g(b) - g(a)}{b - a}$.

- (a) Which part of the difference quotient represents the x-coordinate of P?
- (b) Which part of the difference quotient represents the y-coordinate of P?
- (c) Which part of the difference quotient represents the x-coordinate of Q?
- (d) Which part of the difference quotient represents the y-coordinate of Q?
- 4. (10 points) Use the limit definition of the derivative $f'(x) = \lim_{h \to 0} \frac{f(x+h) f(x)}{h}$ to find the derivative of $f(x) = \frac{1}{2x}$.

5. (20 points) Find the following derivatives using any valid method. You don't have to simplify your answers.

(a)
$$\frac{d}{dx}2x^6 - 5x^3 + 5x$$

(b)
$$\frac{d}{dx} \frac{\tan x}{\sin x}$$

(c)
$$\frac{d}{dt}\sqrt{t}(5-\sqrt{t})$$

(d)
$$\frac{d}{dr} \frac{4}{r^3}$$

(e)
$$\frac{d}{dx} \sec(4x)$$

6. (6 points) Suppose that f and g are functions such that f(5) = 3, g(3) = -4, f'(5) = 2, and $g'(3) = \frac{1}{2}$.

(a) Find
$$g(f(5))$$
.

(b) Find the derivative of g(f(x)) at x = 5.

7. (10 points) Use the axes below to sketch a graph of the parabola

$$y = -x^2 + 4x - 3.$$

Include the coordinates of the vertex and the roots of the parabola in your graph.

8. (8 points) Find a formula for the tangent line to the parabola above at the point (0, -3). Once you find this tangent line, add its graph to the graph above.

9. (16 points) The function $f(x) = \sin(x^2)$ has the graph shown below.

(a) Is this function even, odd, or neither?

(b) Use the chain rule to find f'(x).

(c) Find the x-coordinates of all the points where f(x) has a horizontal tangent.

Formula Sheet

Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Point-Slope Form

$$y - y_1 = m(x - x_1)$$

Common Angles

Linear Approximation

•
$$L(x) = f(a) + f'(a)(x - a)$$

Summation Formulas

•
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

• $\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$

Riemann Sum

•
$$A = \lim_{n \to \infty} \sum_{i=1}^{n} f(x_i) \Delta x$$

Trigonometry Ratios

•
$$\tan x = \frac{\sin x}{\cos x}$$
 $\cot x = \frac{\cos x}{\sin x}$
• $\sec x = \frac{1}{\cos x}$ $\csc x = \frac{1}{\sin x}$

Trig Identities

- $\cos(a+b) = \cos a \cos b \sin a \sin b$
- $\sin(a+b) = \sin a \cos b + \sin b \cos a$

Selected Derivatives

•
$$\frac{d}{dx} \tan x = \sec^2 x$$

• $\frac{d}{dx} \sec x = \sec x \tan x$

•
$$\frac{d}{dx}\cot x = -\csc^2 x$$

•
$$\frac{a}{dx}\csc x = -\csc x\cot x$$

Definition of Derivative

•
$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
, or

•
$$\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$