Discrete Probability Distributions

Binomial

$$
X \sim \operatorname{Bin}(n, p)
$$

Situation: X is the number of successes in n independent Bernoulli trials, which each have probability of success p.

$$
\begin{aligned}
P(X=k) & =\binom{n}{k} p^{k}(1-p)^{n-k} \\
E(X) & =n p \\
\operatorname{Var}(X) & =n p(1-p)
\end{aligned}
$$

Poisson

$$
X \sim \operatorname{Pois}(\lambda)
$$

Situation: Just like binomial, except you don't know n, but it is very large and you know that $n p=\lambda$.

$$
\begin{aligned}
P(X=k) & =e^{-\lambda} \lambda^{k} / k! \\
E(X) & =\lambda \\
\operatorname{Var}(X) & =\lambda
\end{aligned}
$$

Hypergeometric

$$
X \sim \operatorname{HGeom}(s, f, n)
$$

Situation: A population contains s successes and f failures. X is the number of successes in n trials without replacement.

$$
\begin{aligned}
P(X=k) & =\frac{\binom{s}{k}\binom{f}{n-k}}{\binom{+f}{n}} \\
E(X) & =n p \\
\operatorname{Var}(X) & =n p(1-p)\left(1-\frac{n-1}{s+f-1}\right)
\end{aligned}
$$

where $p=\frac{s}{s+f}$.

