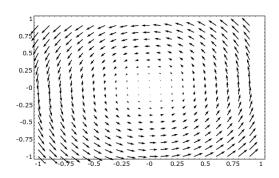
Complex Analysis Homework #4

Due Friday, February 27

- 1. Evaluate the following line integrals by two methods: (i) directly and (ii) using Green's theorem.
 - (a) $\oint_C x^2 y \, dx + xy^3 \, dy$ C is the square with vertices (0,0), (0,1), (1,0), and (1,1).
 - (b) $\oint_C (x+2y) dx + (x-2y) dy$ C consists of the arc of the parabola $y = x^2$ from (0,0) to (1,1) followed by the line segment from (1,1) back to (0,0).
- 2. For each of the following vector fields, determine if the field is conservative or not. If the field is conservative, find the potential function f(x, y).
 - (a) $F(x,y) = (3x^2 4y)\mathbf{i} + (4y^2 2x)\mathbf{j}$
 - (b) $F(x,y) = (x^2 + y)\mathbf{i} + (y^2 + x)\mathbf{j}$
 - (c) $F(x,y) = (ye^x + \sin y)\mathbf{i} + (e^x + x\cos y)\mathbf{j}$
- 3. Consider the vector field F shown below.



- (a) Suppose that C is the upper-half of the unit circle parametrized by $\gamma = (\cos t, \sin t)$. If you integrate the line integral $\int_C F \cdot d\gamma$ from t = 0 to $t = \pi$, will you get a positive or negative value?
- (b) What if C is the lower-half of the unit circle parametrized by $\gamma = (\cos t, -\sin t)$ from t = 0 to $t = \pi$. Is $\int_C F \cdot d\gamma$ positive or negative? Explain why.
- (c) Is $\int_C F \cdot d\gamma$ path independent? Is F conservative? Explain.
- 4. Prove that if C is a simple, smooth, closed curve in \mathbb{R}^2 , then $\oint_C x \, dy$ is the area of the region enclosed by C. (Hint: Recall that $\iint_D 1 \, dA$ is the area of D.)

5. Calculate the following complex line integrals.

(a)
$$\int_C |z|^2 dz$$

 C is the line segment from 1 to i .

(b)
$$\int_C |z| + 1 dz$$

 C is the quarter arc of the unit circle from 1 to i .