Complex Analysis Homework #6

Due Wednesday, March 23

Complete any two of the following three proofs. You may solve all three for extra-credit.

1. Suppose that f(z) is an entire function, and $f^{(n)}(z) = 0$ (that is, the n^{th} derivative of f(z)) for some positive integer n. Prove that f(z) is a polynomial.

2. Use Cauchy's formula, $f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z_0 - z} dz$ to prove the first of **Cauchy's estimates**,

$$|f(z_0)| \le \max_{|z-z_0|=r} |f(z)|$$

(Hint: See the worksheet I gave you.)

3. Suppose that f is an analytic function and A, m, and R_0 are positive constants such that $|f(z)| \leq A|z|^m$ for all $z \in \mathbb{C}$ with $|z| \geq R_0$. Prove that f is a polynomial of degree at most m. (Hint: Use the Cauchy estimates formula below with n > m and let $r \to \infty$.)

The Cauchy Estimates If f(z) is entire, then

$$|f^{(n)}(z_0)| \le \frac{n!}{r^n} \max_{|z-z_0|=r} |f(z)|, \qquad n = 0, 1, 2, \dots$$

where r is any positive real number.